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A WAY TO GENERATE SINGULAR MATRIX

MARIJA MITEVA1, LIMONKA KOCEVA LAZAROVA, NATASA STOJKOVIK,
AND ALEKSANDRA STOJANOVA

ABSTRACT. In this work we consider some matrix products when the resulting
matrix is singular matrix. The main result is a way to obtain singular matrix by
multiplication of two random matrices with specific form: when we multiply
n× k matrix with k× n one, for n > k, we always obtain singular n× n matrix
as result.

1. INTRODUCTION

In the mathematics and in many other sciences, especially programming, the
matrices are so important and applicable. In [1] are presented application-
oriented techniques with matrices in modern linear algebra with the emphasis
on data mining and pattern recognition. The matrix theory is widely used in
many different areas in the engineering like: wireless communications, signal
processing, control etc. The authors in [2] give an overview about applications
of the matrix theory in the wireless communications and the signal processing.
They discuss that the concept of singular value decompositions is the most im-
portant in multiple antennas-based communication systems. Also, in that paper
are given more applications of the matrices in signal processing and signal de-
tection. The big relationship between the matrices and the images is explained
too. In [3] it is shown that the matrices, particularly singular matrices over
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finite fields have huge application in cryptography. In that paper the authors
using singular matrices determine a key exchange method in which two users
over an insecure channel want to agree a secret key.

Singular matrix A is matrix which determinant is equal to 0, i.e. detA = 0.

The singular matrix does not have inverse matrix. Otherwise, the matrix is
called non-singular matrix. In [4] is set the question: How rare are the singular
matrices? The author of that paper noticed that in elementary linear algebra
many examples of singular matrices can be found. But, how many of them occur
naturally? Are they given randomly? In most of the examples, if the students
encounter singular matrix they can easily transform it into a non-singular matrix
(to change its n − 1 rank into a full rank). Because of the rarity of the singular
matrix it is enough to change only one of the entries of the singular matrix.

Many authors in their work consider problems related to singular matrices. It
is shown in [5] that a probability randomly chosen square matrix to be singular
is equal to 0. From topological point of view in [6] is proved that the set of sin-
gular n × n matrices over the real numbers S(R) is closed and nowhere dense
in the set of all n× n matrices over the real numbers Mn(R). In [7], the author
considers the linear singular space, i.e. the space in which each matrix is singu-
lar matrix. The author presents many examples in that paper for that subspace
of the space of all n × n matrices over the real numbers Mn(R), because char-
acterization of such subspaces would solve many problems in the combinatorics
and computational algebra. Many useful properties of the singular matrices are
presented and proved in [8].

The author in [9] noted that not only the non-singular matrices, but also
some singular matrices form a group under the usual law of composition or
multiplication. It is shown that not every singular matrix belongs to such group.
The author provide classification of all matrices as to their group-membership
and exact relationship to groups. Also, the conditions for group membership are
determined.

Not only the matrices over some field of numbers are applicable. In the last
period many papers are devoted to the matrices in which the entries are random
variables. For these random matrices in many papers is considered the proba-
bility that such random matrix is singular. In [10] the authors estimated the
probability that random n × n ±1 - matrix is singular. They have showed that
the probability the random n×n±1 - matrix is singular is Pn < (1− ε)n, where ε
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is constant. Similar estimations for the probability that the random n×n matrix,
where all the entries are discrete random variables is singular are made in [11].
The authors in that paper, have shown that if for all the entries of the matrix for
a constant 0 < p < 1 and a constant positive integer r can be defined a property
p bounded of exponent r , then the probability that the random n× n matrix is
singular is at most

(
p

1
r + o(1)

)n
, where o(1) tends to 0, when n tends to∞.

We are going to show in the next section how one can obtain n × n singular
matrix, multiplying two randomly chosen matrices with specific form.

We will use only basic (well-known) definitions and notations from matrix
theory. We can only mention that with [A]n×k we will denote n × k matrix, i.e.
matrix with n rows and k columns.

2. RESULTS: A WAY TO GENERATE SINGULAR MATRIX

In this section we will prove firstly in separate theorems that multiplying n×1

matrix with 1× n one (for n > 1), then n× 2 matrix with 2× n one (for n > 2)
and n×3 matrix with 3×n one (for n > 3), we always obtain singular matrix as
a result. After that, we will prove the general case, that multiplying n×k matrix
with k × n one, for n > k, the product obtained is singular matrix.

We are proving the first three cases separately in order the reader to deal
easily with some (maybe complicated) notations in the proof of the general
case.

Theorem 2.1. Multiplying n × 1 matrix A with 1 × n matrix B, for n > 1, we
always obtain as result singular n× n matrix AB .

Proof. This is trivial case. If we take A =


a1

a2
...

an

 and B =
[
b1 b2 ... bn

]
, the

product AB will be:

AB =


a1
a2

...

an

 · [ b1 b2 ... bn

]
=


a1b1 a1b2 ... a1bn
a2b1 a2b2 ... a2bn

... ... ... ...

anb1 anb2 ... anbn


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which determinant is:

detAB =

∣∣∣∣∣∣∣∣∣
a1b1 a1b2 ... a1bn

a2b1 a2b2 ... a2bn

... ... ... ...

anb1 anb2 ... anbn

∣∣∣∣∣∣∣∣∣ = a1a2...an

∣∣∣∣∣∣∣∣∣
b1 b2 ... bn
b1 b2 ... bn

... ... ... ...

b1 b2 ... bn

∣∣∣∣∣∣∣∣∣ = 0

This proves the theorem. �

Theorem 2.2. Multiplying n × 2 matrix with 2 × n one, for n > 2, we always
obtain singular n× n matrix as result.

Proof. The proof will be done by induction.

1) We will prove first the case n = 3. If we take A = [A]3×2 =

 a b

c d

e f

 and

B = [B]2×3 =

[
x y z

s k u

]
, we will prove that the product AB is singular 3 × 3

matrix:

AB =

 a b

c d

e f

 · [ x y z

s k u

]
=

 ax+ bs ay + bk az + bu

cx+ ds cy + dk cz + du

ex+ fs ey + fk ez + fu


To calculate the determinant of this matrix, we will multiply the second and

the third row with 1
a
· a and thus obtain:

detAB =

∣∣∣∣∣∣∣
ax+ bs ay + bk az + bu

cx+ ds cy + dk cz + du

ex+ fs ey + fk ez + fu

∣∣∣∣∣∣∣ =
1

a2

∣∣∣∣∣∣∣
ax+ bs ay + bk az + bu

acx+ ads acy + adk acz + adu

aex+ afs aey + afk aez + afu

∣∣∣∣∣∣∣
We will add the first row multiplied by (−c) to the second row and add the

first row multiplied by (−e) to the third row and obtain:



A WAY TO GENERATE SINGULAR MATRIX 4333

detAB = 1
a2

∣∣∣∣∣∣∣
ax+ bs ay + bk az + bu

acx+ ads− acx− cbs acy + adk − acy − cbk acz + adu− acz − cbu

aex+ afs− aex− ebs aey + afk − aey − ebk aez + afu− aez − ebu

∣∣∣∣∣∣∣ =
= 1

a2

∣∣∣∣∣∣∣
ax+ bs ay + bk az + bu

ads− cbs adk − cbk adu− cbu

afs− ebs afk − ebk afu− ebu

∣∣∣∣∣∣∣ = 1
a2

∣∣∣∣∣∣∣
ax+ bs ay + bk az + bu

s (ad− cb) k (ad− cb) u (ad− cb)

s (af − eb) k (af − eb) u (af − eb)

∣∣∣∣∣∣∣ =
= (ad−cb)(af−eb)

a2

∣∣∣∣∣∣∣
ax+ bs ay + bk az + bu

s k u

s k u

∣∣∣∣∣∣∣ = 0

Therefore, the product is singular matrix.

2) Now let we take A = [A]4×2 =


a b

c d

e f

g h

 and B = [B]2×4 =

[
x y z t

s k u m

]
,

then estimate AB:

AB = [AB]4×4 =


a b

c d

e f

g h

·
[

x y z t

s k u m

]
=


ax+ bs ay + bk az + bu at+ bm

cx+ ds cy + dk cz + du ct+ dm

ex+ fs ey + fk ez + fu et+ fm

gx+ hs gy + hk gz + hu gt+ hm


Let us estimate the determinant of the resulting matrix, i.e. detAB. If we use

minor expansion formula, choosing the last row, we have:

detAB = − (gx+ hs)

∣∣∣∣∣∣∣
ay + bk az + bu at+ bm

cy + dk cz + du ct+ dm

ey + fk ez + fu et+ fm

∣∣∣∣∣∣∣+ (gy + hk)

∣∣∣∣∣∣∣
ax+ bs az + bu at+ bm

cx+ ds cz + du ct+ dm

ex+ fs ez + fu et+ fm

∣∣∣∣∣∣∣
− (gz + hu)

∣∣∣∣∣∣∣
ax+ bs ay + bk at+ bm

cx+ ds cy + dk ct+ dm

ex+ fs ey + fk et+ fm

∣∣∣∣∣∣∣+ (gt+ hm)

∣∣∣∣∣∣∣
ax+ bs ay + bk az + bu

cx+ ds cy + dk cz + du

ex+ fs ey + fk ez + fu

∣∣∣∣∣∣∣
If we look at the last minor, it is easy to notice that this minor can be consider

as determinant of the matrix obtained by multiplying the matrices [A]3×2 and
[B]2×3 in the previous case 1). Those matrices can be obtained from A = [A]4×2

and B = [B]2×4 given in this case 2), when erasing the last row in A and the
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last column in B. Therefore, it is the determinant of matrix obtained as product
of 3× 2 and 2× 3 matrix and we have already proved in the case 1) that this is
singular matrix. It means that the last minor has value 0.

If we look at the other three minors in the previous expansion, we can easily
notice that each of them can be consider as determinant of 3×3 matrix obtained
as result of multiplying 3× 2 and 2× 3 matrices: if we erase the last row in the
matrix A = [A]4×2 and the first column in the matrix B = [B]2×4 given in this
case 2), and then multiply thus obtained matrices, we will obtain as a product
matrix which determinant is the first minor in the previous expansion. Erasing
the last row in A = [A]4×2 and the second column in B = [B]2×4, then mul-
tiplying obtained matrices the result will be matrix with the same elements as
elements in the second minor. In the same way the third minor can be consider
as product of 3 × 2 and 2 × 3 matrices, erasing the last row in A = [A]4×2 and
the third column in B = [B]2×4. According to the case 1) all these minors have
value 0, which means that detAB = 0. Therefore, multiplying 4 × 2 and 2 × 4

matrix, the result will always be singular matrix.

3) We suppose now that the Theorem 2.2 holds for the product of (n− 1)× 2

matrix with 2× (n− 1) one.

4) If we take A = [A]n×2 =


a11 a12
a21 a22
... ...

an1 an2

 and B = [B]2×n =

[
b11 b12 ... b1n
b21 b22 ... b2n

]

for the product AB we have:

AB = [AB]n×n =


a11b11 + a12b21 a11b12 + a12b22 ... a11b1n + a12b2n
a21b11 + a22b21 a21b12 + a22b22 ... a21b1n + a22b2n

... ... ... ...

an1b11 + an2b21 an1b12 + an2b22 ... an1b1n + an2b2n


We can calculate the determinant of this matrix by minor expansion, choosing

the last row. Each minor obtained can be consider as determinant of matrix that
is product of (n− 1)× 2 matrix with 2× (n− 1) one, similarly as in the case 2).
According to 3) all these minors have value 0, which means that detAB in this
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case has value 0, thus multiplying n× 2 with 2× n matrix, the result is singular
matrix. �

Theorem 2.3. Multiplying matrix A = [A]n×3 with matrix B = [B]3×n, for n > 3,
we always obtain singular AB = [AB]n×n matrix as result.

Proof. We will prove the theorem by induction.

1) First, we prove that multiplying 4 × 3 and 3 × 4 matrix, we obtain 4 × 4

singular matrix.

Let A = [A]4×3 =


a b c

d e f

g h i

j k l

 and B = [B]3×4 =

 m n o p

q r s t

u v w x

. With

multiplication we obtain:

AB = [AB]4×4 =


am+ bq + cu an+ br + cv ao+ bs+ cw ap+ bt+ cx

dm+ eq + fu dn+ er + fv do+ es+ fw dp+ et+ fx

gm+ hq + iu gn+ hr + iv go+ hs+ iw gp+ ht+ ix

jm+ kq + lu jn+ kr + lv jo+ ks+ lw jp+ kt+ lx


Let we calculate the determinant of this matrix. First, we will multiply the

second, the third and the last row with 1
a
· a and thus obtain:

detAB =

∣∣∣∣∣∣∣∣∣
am+ bq + cu an+ br + cv ao+ bs+ cw ap+ bt+ cx

dm+ eq + fu dn+ er + fv do+ es+ fw dp+ et+ fx

gm+ hq + iu gn+ hr + iv go+ hs+ iw gp+ ht+ ix

jm+ kq + lu jn+ kr + lv jo+ ks+ lw jp+ kt+ lx

∣∣∣∣∣∣∣∣∣ =

= 1
a3

∣∣∣∣∣∣∣∣∣
am+ bq + cu an+ br + cv ao+ bs+ cw ap+ bt+ cx

adm+ aeq + afu adn+ aer + afv ado+ aes+ afw adp+ aet+ afx

agm+ ahq + aiu agn+ ahr + aiv ago+ ahs+ aiw agp+ aht+ aix

ajm+ akq + alu ajn+ akr + alv ajo+ aks+ alw ajp+ akt+ alx

∣∣∣∣∣∣∣∣∣
We will add the first row multiplied with (−d) to the second row, add the first

row multiplied with (−g) to the third row and add the first row multiplied with
(−j) to the last row and for detAB then obtain:
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1

a3

∣∣∣∣∣∣∣∣∣
am+ bq + cu an+ br + cv ao+ bs+ cw ap+ bt+ cx

q (ae− db) + u (af − dc) r (ae− db) + v (af − dc) s (ae− db) + w (af − dc) t (ae− db) + x (af − dc)

q (ah− gb) + u (ai− gc) r (ah− gb) + v (ai− gc) s (ah− gb) + w (ai− gc) t (ah− gb) + x (ai− gc)

q (ak − bj) + u (al − jc) r (ak − bj) + v (al − jc) s (ak − bj) + w (al − jc) t (ak − bj) + x (al − jc)

∣∣∣∣∣∣∣∣∣
Considering (ae− db) as multiplier in the second row, (ah− gb) as multiplier

in the third row and considering (ak − bj) as multiplier in the last row, we have:

detAB = (ae−db)(ah−gb)(ak−bj)
a3

∣∣∣∣∣∣∣∣∣
am+ bq + cu an+ br + cv ao+ bs+ cw ap+ bt+ cx

q + uaf−dc
ae−db r + v af−dc

ae−db s+ w af−dc
ae−db t+ xaf−dc

ae−db

q + u ai−gc
ah−gb r + v ai−gc

ah−gb s+ w ai−gc
ah−gb t+ x ai−gc

ah−gb

q + u al−jc
ak−bj r + v al−jc

ak−bj s+ w al−jc
ak−bj t+ x al−jc

ak−bj

∣∣∣∣∣∣∣∣∣
Denoting Q = (ae−db)(ah−gb)(ak−bj)

a3
and adding the second row multiplied by

(−1) to the third and to the last row, we obtain:

detAB = Q

∣∣∣∣∣∣∣∣∣∣
am+ bq + cu an+ br + cv ao+ bs+ cw ap+ bt+ cx

q + uaf−dc
ae−db

r + v af−dc
ae−db

s+ w af−dc
ae−db

t+ xaf−dc
ae−db

u
(

ai−gc
ah−gb

− af−dc
ae−db

)
v
(

ai−gc
ah−gb

− af−dc
ae−db

)
w
(

ai−gc
ah−gb

− af−dc
ae−db

)
x
(

ai−gc
ah−gb

− af−dc
ae−db

)
u
(

al−jc
ak−bj

− af−dc
ae−db

)
v
(

al−jc
ak−bj

− af−dc
ae−db

)
w
(

al−jc
ak−bj

− af−dc
ae−db

)
x
(

al−jc
ak−bj

− af−dc
ae−db

)
∣∣∣∣∣∣∣∣∣∣

Denoting M =
(

ai−gc
ah−gb

− af−dc
ae−db

)
and N =

(
al−jc
ak−bj

− af−dc
ae−db

)
in the last determi-

nant, we have:

detAB = Q

∣∣∣∣∣∣∣∣∣
am+ bq + cu an+ br + cv ao+ bs+ cw ap+ bt+ cx

q + uaf−dc
ae−db

r + v af−dc
ae−db

s+ w af−dc
ae−db

t+ xaf−dc
ae−db

uM vM wM xM

uN vN wN xN

∣∣∣∣∣∣∣∣∣ =

= QMN

∣∣∣∣∣∣∣∣∣
am+ bq + cu an+ br + cv ao+ bs+ cw ap+ bt+ cx

q + uaf−dc
ae−db

r + v af−dc
ae−db

s+ w af−dc
ae−db

t+ xaf−dc
ae−db

u v w x

u v w x

∣∣∣∣∣∣∣∣∣ = 0

which proves that multiplying 4×3 with 3×4 matrix, we obtain 4×4 singular
matrix.
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2) If we take 5 × 3 and 3 × 5 matrices: A = [aij]5×3

(
i = 1, 5; j = 1, 3

)
and

B = [bkl]3×5

(
k = 1, 3; l = 1, 5

)
, multiplying A with B we have:

AB =



∑
a1jbj1

∑
a1jbj2

∑
a1jbj3

∑
a1jbj4

∑
a1jbj5∑

a2jbj1
∑

a2jbj2
∑

a2jbj3
∑

a2jbj4
∑

a2jbj5∑
a3jbj1

∑
a3jbj2

∑
a3jbj3

∑
a3jbj4

∑
a3jbj5∑

a4jbj1
∑

a4jbj2
∑

a4jbj3
∑

a4jbj4
∑

a4jbj5∑
a5jbj1

∑
a5jbj2

∑
a5jbj3

∑
a5jbj4

∑
a5jbj5


where j = 1, 3 in each sum.

To calculate the determinant of this matrix we can use again the minor expan-
sion formula choosing the last row. It is obvious that all minors in the expansion
can be consider as determinant of matrix obtained with multiplication of 4 × 3

with 3 × 4 matrix (similar as in the case 2 in the previous theorem). According
to the case 1) in this theorem, all the minors in the expansion will be 0 which
means that multiplying 5× 3 matrix with 3× 5 one we obtain singular matrix.

3) We suppose now that the theorem holds for matrices of type (n− 1) × 3

and 3× (n− 1), where n− 1 > 3.

4) If we take now matrix A = [A]n×3 and B = [B]3×n and try to calculate the
determinant of the product AB, we can do it with minor expansion choosing
the last row in the matrix AB. Each thus obtained minor will be determinate of
matrix that is result of multiplying matrices of type (n− 1)×3 and 3×(n− 1) and
according to 3) all these minors have value 0, which proves the theorem. �

We can generalize these results and prove the next theorem.

Theorem 2.4. Multiplying matrix A = [A]n×k with B = [B]k×n, for n > k, we
always obtain as result singular n× n matrix.

Proof. We will prove first that the theorem holds for the product [AB]k×k =

[A]k×(k−1) · [B](k−1)×k and then, using this result, we will prove the general case
by induction regarding n.
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We take A =


a11 a12 ... a1(k−1)

a21 a22 ... a2(k−1)

... ... ... ...

ak1 ak2 ... ak(k−1)

 and B =


b11 b12 ... b1k
b21 b22 ... b2k

... ... ... ...

b(k−1)1 b(k−1)2 ... b(k−1)k

.

The product AB is

AB =



k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

k−1∑
j=1

a2jbj1
k−1∑
j=1

a2jbj2 ...
k−1∑
j=1

a2jbjk

... ... ... ...
k−1∑
j=1

akjbj1
k−1∑
j=1

akjbj2 ...
k−1∑
j=1

akjbjk


Let us now compute the determinant of the last matrix. We will multiply each

row except the first one with 1
a11
· a11 and then obtain:

detAB =
1

a11k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

k−1∑
j=1

a11a2jbj1
k−1∑
j=1

a11a2jbj2 ...
k−1∑
j=1

a11a2jbjk

... ... ... ...
k−1∑
j=1

a11akjbj1
k−1∑
j=1

a11akjbj2 ...
k−1∑
j=1

a11akjbjk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We will add the first row multiplied by (−aj1) to the j− th row, for j = 2, 3, ...k,
i.e. add the first row multiplied by (−a21) to the second row; add the first row
multiplied by (−a31) to the third row, etc. We will obtain:

detAB =
1

a11k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

k−1∑
j=2

bj1 (a11a2j − a21a1j)
k−1∑
j=2

bj2 (a11a2j − a21a1j) ...
k−1∑
j=1

bjk (a11a2j − a21a1j)

... ... ... ...
k−1∑
j=2

bj1 (a11akj − aj1a1j)
k−1∑
j=2

bj2 (a11akj − aj1a1j) ...
k−1∑
j=2

bjk (a11akj − aj1a1j)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



A WAY TO GENERATE SINGULAR MATRIX 4339

For simplification of the notation, we will substitute the terms in the small
brackets: we will denote A1

ij = a11aij − ai1a1j, i.e. A1
2j = a11a2j − a21a1j, A1

3j
=

a11a3j − a31a1j, etc. Applying this substitution in the detAB, we have:

detAB =
1

a11k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

k−1∑
j=2

bj1A
1
2j

k−1∑
j=2

bj2A
1
2j ...

k−1∑
j=1

bjkA
1
2j

... ... ... ...
k−1∑
j=2

bj1A
1
kj

k−1∑
j=2

bj2A
1
kj ...

k−1∑
j=2

bjkA
1
kj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We will consider A1

22 as multiplier of the second row, A1
32 as multiplier of the

third row, etc. and consider A1
k2 as multiplier of the last row. Getting each of

them as multiplier of the determinant, we obtain:

detAB =
A1

22A
1
32 · · · A1

k2

a11k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

b21 +
k−1∑
j=3

bj1
A1

2j

A1
22

b22 +
k−1∑
j=3

bj2
A1

2j

A1
22

... b22 +
k−1∑
j=3

bjk
A1

2j

A1
22

... ... ... ...

b21 +
k−1∑
j=3

bj1
A1

kj

A1
k2

b22 +
k−1∑
j=3

bj2
A1

kj

A1
k2

... b22 +
k−1∑
j=3

bjk
A1

kj

A1
k2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Multiplying the second row with (−1) and adding to all rows bellow it, we

have:

detAB =
A1

22A
1
32 · · ·A1

k2

a11k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

b21 +
k−1∑
j=3

bj1
A1

2j

A1
22

b22 +
k−1∑
j=3

bj2
A1

2j

A1
22

... b22 +
k−1∑
j=3

bjk
A1

2j

A1
22

k−1∑
j=3

bj1

(
A1

3j

A1
32
−

A1

2j

A1
22

)
.........

k−1∑
j=3

bj2

(
A1

3j

A1
32
−

A1

2j

A1
22

)
.........

...
k−1∑
j=3

bjk

(
A1

3j

A1
32
−

A1

2j

A1
22

)
.......

k−1∑
j=3

bj1

(
A1

kj

A1
k2
−

A1

2j

A1
22

)
k−1∑
j=3

bj2

(
A1

kj

A1
k2
−

A1

2j

A1
22

)
...

k−1∑
j=3

bjk

(
A1

kj

A1
k2
−

A1

2j

A1
22

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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For simplification in the notation, we will substitute again the terms in the
small brackets. We will denote: A2

ij =
A1

ij

A1
i2
− A1

2j

A1
22

and then have:

detAB =
A1

22A
1
32 · · · A1

k2

a11k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

b21 +
k−1∑
j=3

bj1
A1

2j

A1
22

b22 +
k−1∑
j=3

bj2
A1

2j

A1
22

... b22 +
k−1∑
j=3

bjk
A1

2j

A1
22

k−1∑
j=3

bj1A
2
3j

.........

k−1∑
j=3

bj2A
2
3j

.........

...
k−1∑
j=3

bjkA
2
3j

.......
k−1∑
j=3

bj1A
2
kj

k−1∑
j=3

bj2A
2
kj ...

k−1∑
j=3

bjkA
2
kj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Similar as above, we will consider A2

33 as multiplier of the second row, A2
43 as

multiplier of the third row, etc. and consider A2
k3 as multiplier of the last row.

Getting again each of them as multiplier of the determinant, we obtain:

detAB =
A1

22A
1
32 · · ·A1

k2 ·A2
33A

2
43 · · ·A2

k3

a11k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

b21 +
k−1∑
j=3

bj1
A1

2j

A1
22

b22 +
k−1∑
j=3

bj2
A1

2j

A1
22

... b22 +
k−1∑
j=3

bjk
A1

2j

A1
22

b31 +
k−1∑
j=4

bj1
A2

3j

A2
33

.........

b32 +
k−1∑
j=4

bj2
A2

3j

A2
33

.........

... b3k +
k−1∑
j=4

bjk
A2

3j

A2
33

.......

b31 +
k−1∑
j=4

bj1
A2

kj

A2
33

b32 +
k−1∑
j=4

bj2
A2

kj

A2
33

... b3k +
k−1∑
j=4

bjk
A2

kj

A2
33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In the next step, we will add the third row multiplied with (−1) to all the rows
bellow it and thus obtain:

detAB =
A1

22A
1
32 · · ·A1

k2 ·A2
33A

2
43 · · ·A2

k3

a11k−1
×

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

b21 +
k−1∑
j=3

bj1
A1

2j

A1
22

b22 +
k−1∑
j=3

bj2
A1

2j

A1
22

... b2k +
k−1∑
j=3

bjk
A1

2j

A1
22

b31 +
k−1∑
j=4

bj1
A2

3j

A2
33

b32 +
k−1∑
j=4

bj2
A2

3j

A2
33

... b3k +
k−1∑
j=4

bjk
A2

3j

A2
33

k−1∑
j=4

bj1

(
A2

4j

A2
43
− A2

3j

A2
33

) k−1∑
j=4

bj2

(
A2

4j

A2
43
− A2

3j

A2
33

)
...

k−1∑
j=4

bjk

(
A2

4j

A2
43
− A2

3j

A2
33

)
... ... ... ...

k−1∑
j=4

bj1

(
A2

kj

A2
k3
− A2

3j

A2
33

) k−1∑
j=4

bj2

(
A2

kj

A2
k3
− A2

3j

A2
33

)
...

k−1∑
j=4

bjk

(
A2

kj

A2
k3
− A2

3j

A2
33

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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We will denote A3
ij =

A2
ij

A2
i3
− A2

3j

A2
33

, i = 4, ...k, to simplify the notations (to write
in a short way the terms in the brackets) and repeat previous steps starting from
the fourth row: we will consider A3

4j as multiplier of the fourth row, etc. consider
A3

kj as multiplier of the last row, then get them as multipliers of the determinant.
Then we will add the fourth row multiplied with (−1) to the rows bellow it, etc.
We can notice that when we add certain row multiplied by (−1) to the others
bellow, in the sums in those rows bellow, we eliminate one element, so the sums
bellow have one element less. After finite number of steps, we will obtain:

detAB =

k∏
j=2

A1
j2

k∏
j=3

A2
j3

k∏
j=4

A3
j4···

k∏
j=k−2

Ak−3
i(k−2)

a11
k−1 ×

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

b21 +
k−1∑
j=3

bj1
A1

2j

A1
22

b22 +
k−1∑
j=3

bj2
A1

2j

A1
22

... b22 +
k−1∑
j=3

bjk
A1

2j

A1
22

... ... ... ...

b(k−2)1 + b(k−1)1

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

b(k−2)2 + b(k−1)2

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

... b(k−2)k + b(k−1)k

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

b(k−2)1 + b(k−1)1

Ak−3
(k−1)(k−1)

Ak−3
(k−1)(k−2)

b(k−2)2 + b(k−1)2

Ak−3
(k−1)(k−1)

Ak−3
(k−1)(k−2)

... b(k−2)k + b(k−1)k

Ak−3
(k−1)(k−1)

Ak−3
(k−1)(k−2)

b(k−2)1 + b(k−1)1

Ak−3
k(k−1)

Ak−3
k(k−2)

b(k−2)2 + b(k−1)2

Ak−3
k(k−1)

Ak−3
k(k−2)

... b(k−2)k + b(k−1)k

Ak−3
k(k−1)

Ak−3
k(k−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Now we will add the (k − 2) - th row multiplied with (−1) to the last two row

and thus obtain:

detAB =

k∏
j=2

A1
j2

k∏
j=3

A2
j3

k∏
j=4

A3
j4···

k∏
j=k−2

Ak−3
i(k−2)

a11
k−1 ×

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 · · ·
k−1∑
j=1

a1jbjk

b21 +
k−1∑
j=3

bj1
A1

2j

A1
22

b22 +
k−1∑
j=3

bj2
A1

2j

A1
22
· · · b22 +

k−1∑
j=3

bjk
A1

2j

A1
22

... ... ... ...

b(k−2)1 + b(k−1)1

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

· · · b(k−2)k + b(k−1)k

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

b(k−1)1

(
Ak−3

(k−1)(k−1)

Ak−3
(k−1)(k−2)

−
Ak−3

(k−2)(k−1)

Ak−3
(k−2)(k−2)

)
· · · b(k−1)k

(
Ak−3

(k−1)(k−1)

Ak−3
(k−1)(k−2)

−
Ak−3

(k−2)(k−1)

Ak−3
(k−2)(k−2)

)
b(k−1)1

(
Ak−3

k(k−1)

Ak−3
k(k−2)

−
Ak−3

(k−2)(k−1)

Ak−3
(k−2)(k−2)

)
· · · b(k−1)k

(
Ak−3

k(k−1)

Ak−3
k(k−2)

−
Ak−3

(k−2)(k−1)

Ak−3
(k−2)(k−2)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Using substitution Ak−2
(k−1)(k−1) =

Ak−3
(k−1)(k−1)

Ak−3
(k−1)(k−2)

−
Ak−3

(k−2)(k−1)

Ak−3
(k−2)(k−2)

and Ak−2
k(k−1) =

Ak−3
k(k−1)

Ak−3
k(k−2)

−
Ak−3

(k−2)(k−1)

Ak−3
(k−2)(k−2)

we have:

detAB =

k∏
j=2

A1
j2

k∏
j=3

A2
j3

k∏
j=4

A3
j4···

k∏
j=k−2

Ak−3
i(k−2)

a11
k−1 ×

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

b21 +
k−1∑
j=3

bj1
A1

2j

A1
22

b22 +
k−1∑
j=3

bj2
A1

2j

A1
22

... b22 +
k−1∑
j=3

bjk
A1

2j

A1
22

... ... ... ...

b(k−2)1 + b(k−1)1

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

b(k−2)2 + b(k−1)2

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

... b(k−2)k + b(k−1)k

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

b(k−1)1A
k−2
(k−1)(k−1) b(k−1)2A

k−2
(k−1)(k−1) ... b(k−1)kA

k−2
(k−1)(k−1)

b(k−1)1A
k−2
k(k−1) b(k−1)2A

k−2
k(k−1) ... b(k−1)kA

k−2
k(k−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Finally, getting Ak−2

(k−1)(k−1) and Ak−2
k(k−1) from the last two rows as multipliers of

the determinant, we obtain:

detAB =

k∏
j=2

A1
j2

k∏
j=3

A2
j3

k∏
j=4

A3
j4···

k∏
j=k−2

Ak−3
j(k−2)

k∏
j=k−1

Ak−2
j(k−1)

a11
k−1 ×

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k−1∑
j=1

a1jbj1
k−1∑
j=1

a1jbj2 ...
k−1∑
j=1

a1jbjk

b21 +
k−1∑
j=3

bj1
A1

2j

A1
22

b22 +
k−1∑
j=3

bj2
A1

2j

A1
22

... b22 +
k−1∑
j=3

bjk
A1

2j

A1
22

... ... ... ...

b(k−2)1 + b(k−1)1

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

b(k−2)2 + b(k−1)2

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

... b(k−2)k + b(k−1)k

Ak−3
(k−2)(k−1)

Ak−3
(k−2)(k−2)

b(k−1)1 b(k−1)2 ... b(k−1)k

b(k−1)1 b(k−1)2 ... b(k−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The determinant has value 0 as it has two equal rows. So, multiplying k ×

(k − 1) matrix with (k − 1)× k matrix, we obtain singular k × k matrix.

The proof that the Theorem 2.4 holds for the product AB of arbitrary matrices
A = [A]n×k and B = [B]k×n, where n > k, i.e. the product AB in this case is
singular n× n matrix, can easily be done by induction. We have already proved
that the theorem holds when n = k + 1. We suppose that the theorem holds for
(n− 1), where n− 1 > k, and using this we can prove that it holds for all n > k.
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If we take A =


a11 a12 ... a1k
a21 a22 ... a2k

... ... ... ...

an1 an2 ... ank

 and B =


b11 b12 ... b1n
b21 b22 ... b2n

... ... ... ...

bk1 bk2 ... bkn

, then

AB =



k∑
j=1

a1jbj1
k∑

j=1

a1jbj2 ...
k∑

j=1

a1jbjn

k∑
j=1

a2jbj1
k∑

j=1

a2jbj2 ...
k∑

j=1

a2jbjn

... ... ... ...
k∑

j=1

anjbj1
k∑

j=1

anjbj2 ...
k∑

j=1

anjbjn


To calculate the determinant of the last matrix, we can use minor expansion,

for example, choosing the last row. Similar as in the previous theorems, each
minor thus we obtain can be consider as determinant of matrix which is result
of multiplication of (n− 1) × k matrix with k × (n− 1) matrix. According to
the inductive assumption, all these minors have value 0, so detAB = 0, which
proves the theorem. �

3. CONCLUSION

In this manuscript we have proved how we can obtain singular matrix by mul-
tiplying two randomly chosen matrices with specific form. Having in mind that
singular matrices have big application in mathematics and other sciences, and
also having in mind that the probability to generate randomly singular matrix is
very low, we think that this paper will have big impact in mathematics, compu-
tational and other sciences which deal with matrices because the main result in
the paper is exactly a way to generate singular matrix, and thus many scientists
will have interest for this paper.
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