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FIXED POINT THEOREMS FOR A PAIR OF MAPPINGS IN
b- DISLOCATED METRIC SPACE

SURJEET SINGH CHAUHAN (GONDER)1 AND KAMALPREET KAUR

ABSTRACT. The purpose of this paper is to prove common fixed point theorems
in complete b-dislocated metric space. We introduce Ψ − G contraction where
Ψ and G are the set of all continuous and non- decreasing functions to show
the existence of unique common fixed point. Further we prove a fixed point
theorem for extended s− α quasi-contraction.

1. INTRODUCTION

Fixed point theory (FPT) finds its applications in various fields like economics,
engineering, physics, mathematics ,etc. The Banach contraction principle (BCP)
is the base of research in metric space. In 1989, Bakhtin [6] and Czerwik [5],
extended the BCP in metric space. Recently, we have seen a number of exten-
sions of metric space. The dislocated metric space and b-dislocated metric space
given by Hitzler and Seda [4] and Nawab Hussain et al. [3] respectively.

Several new applications have been suggested in [14] [12] [13] [15] [16]
[24]. In 1976, Jungck [7] concluded the BCP using commuting mappings,
entrenched the perception of mappings that are weakly commuting by Sessa
[11] and the pair of mappings which are compatible is produced. Jungck and
Rhoades [10] and Dhage [9] described if self-mappings pair commute at their
coincidence points will be weakly compatible. Afterwards, this approach of
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weak commutativity is weakened and used by Singh [22], Pathak [17], Mishra
[21], Gairola and Whitfield [18], Pant [19], Tivari and Singh [20] and others.
The purpose of the present research work is to introduce FPT for s − α quasi-
contractions with the use of double self mappings in b-dislocated metric space
which satisfies different set of constraints.We generalize some coincidence and
fixed point theorems with concepts of weakly compatible pair of mappings, as
well as by using Ψ -contractive conditions on b- dislocated metric spaces. The
objective of this paper is to unify and generalize recent results in the setting
dislocated and b -dislocated metric spaces using a class of continuous functions
G4 .

2. PRELIMINARIES

Definition 2.1. [1] Consider a non-empty set B with mapping dl : B×B → [0,∞)

is known as dislocated metric (dl-metric) if the following constraints are satisfied
for any p, q, r ∈ B:

(1) If dl(p, q) = 0, then p = q;
(2) dl(p, q) = dl(q, p);
(3) dl(p, q) 6 dl(p, r) + dl(r, q).

The pair (B, dl) is known as a dislocated metric space. But when p = q, dl(p, q)

may not be 0.

Definition 2.2. Consider {pn} is a sequence in dl-metric space (B, dl)

(1) if only, for ε > 0, ∃ n0 belongs N s.t(such that) ∀ m,n > n0, we get
dl(pm, pn) < ε or limn,m→∞ dl(pn, pm) = 0 then it is named as Cauchy
sequence,

(2) it is convergent relative to dl if ∃, p ∈ B so that dl(pn, p)→ 0 as n→∞.

By these circumstances, the limit of {pn} is p and pn → p.

Definition 2.3. Consider a non empty set B with mapping
bd : B × B → [0,∞) is named as b-dislocated metric provided that the following
constraints are satisfied for any p, q, r ∈ B and s > 1:

(1) If bd(p, q) = 0, then p = q;
(2) bd(p, q) = bd(q, p);
(3) bd(p, q) 6 s[bd(p, r) + bd(r, q)].
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The space (B, bd) is known as b-dislocated metric space.

Definition 2.4. [1] Consider (B, bd) is a bd-metric space, {pn} denotes sequence of
points inB. Some point p ∈ B is known as limit of {pn} provided limn→∞ bd(pn, p) =

0 then we assert {pn} is bd-convergent to p and indicate it by pn → p as n→∞.

Definition 2.5. [1] In a bd-metric space (B, bd) let a sequence {pn} is named as
bd-Cauchy sequence iff, for ε > 0, ∃, n0 belongs N s.t for all n,m > n0, we are
having bd(pn, pm) < ε or limn,m→∞ bd(pn, pm) = 0.

Definition 2.6. [2] Consider the self mappings pair (R,P ) described on a metric
space (B, d) is weakly - compatible. If the mappings commute at their coincidence
points, i.e, Rp = Pp for some p ∈ B ⇒ RPp = PRp.

Definition 2.7. [25] Consider a non-empty set B,R and P are two self-mappings
then,

(i) if Rp = p, then the point p ∈ B is known as fixed point of R.
(ii) if Rp = Pp, then the point p ∈ B is known as coincidence point of R, P

and u = Rp = Pp is a coincidence point of R, P .
(iii) if Rp = Pp = p, then the point p ∈ B is known as common fixed point of

R and P .

We consider the set G4 of all continuous functions g : [0,∞)4 → [0,∞) with
the properties:

a) g is non-decreasing in respect to each variable.
b) g(t, t, t, t) 6 t, t ∈ [0,∞) .

Examples are as follows:
g1 : g1(t1, t2, t3, t4) = max{t1, t2, t3, t4}
g2 : g2(t1, t2, t3, t4) = max{t1 + t2, t2 + t3, t1 + t3, t3 + t4}
g3 : g3(t1, t2, t3, t4) = [max{t1t2, t2t3, t1t3, t3t4}]

1
2

g4 : g4(t1, t2, t3, t4) = [max{tp1, t
p
2, t

p
3, t

p
4}]

1
p ,p > 0 .

3. MAIN RESULTS

Consider Ψ which denotes the set of all continuous, non decreasing functions
and Ψ : [0,∞)→ [0,∞) s.t Ψ(αt) > 0 iff t = 0,α > 0.
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Definition 3.1. Let (B, bd) be a complete bd - dislocated metric space with param-
eter s > 1 and R,P : B → B are two self- mappings s.t ∀ p, q ∈ B, C > 2 and
Ψ ∈ Ψ satisfy the following contractive condition

Ψ(2s2bd(Rp,Rq)) 6 CΨmax[g{bd(Pp, Pq), bd(Rp, Pp), bd(Rq, Pq),
bd(Rp, Pq)bd(Pp,Rq)

2s
},

g{bd(Rp,Rq), bd(Pp,Rp), bd(Rq, Pq),
bd(Rp, Pq)bd(Rq, Pp)

1 + bd(Rp,Rq)
}]

is known as Ψ˘G contraction.

Theorem 3.1. Let (B, bd) be a complete b - dislocated metric space with parameter
s > 1 and R,P : B → B are two self- mappings s.t ∀ p, q ∈ B, C > 2 and Ψ ∈ Ψ

satisfying the following contractive condition:

Ψ(2s2bd(Rp,Rq)) 6 CΨmax[g{bd(Pp, Pq), bd(Rp, Pp), bd(Rq, Pq),
bd(Rp, Pq)bd(Pp,Rq)

2s
},

g{bd(Rp,Rq), bd(Pp,Rp), bd(Rq, Pq),
bd(Rp, Pq)bd(Rq, Pp)

1 + bd(Rp,Rq)
}]

where g ∈ G4, R(B) ⊆ P (B). Then mappings R and P have a unique common
fixed point.

Proof. Consider p0 be arbitrary element in B. As R(B) ⊆ P (B).
Therefore, we can define a sequence,

{Rp0, Rp1, Rp2, ......, Rp2n, Rp2n+1, .....}

s.t Rp2n = Pp2n+1 for n=0,1,2,3.... Now, to show that this sequence is a Cauchy
sequence. Using the condition p = p2n and q = p2n+1,we have

Ψ(2s2bd(Rp2n, Rp2n+1)) 6 CΨmax[g{bd(Pp2n, Pp2n+1), bd(Rp2n, Pp2n), bd(Rp2n+1, Pp2n+1),

bd(Rp2n, Pp2n+1)bd(Pp2n, Rp2n+1)

2s
},

g{bd(Rp2n, Rp2n+1), bd(Pp2n, Rp2n), bd(Rp2n+1, Pp2n+1),
bd(Rp2n, Pp2n+1)bd(Rp2n+1, Pp2n)

1 + bd(Rp2n, Rp2n+1)
}] .

As Rp2n = Pp2n+1 for n=0,1,2,3.... we have,

Ψ(2s2bd(Rp2n, Rp2n+1)) 6 CΨmax[g{bd(Rp2n−1, Rp2n), bd(Rp2n, Rp2n−1), bd(Rp2n+1, Rp2n),

bd(Rp2n, Rp2n)bd(Rp2n−1, Rp2n+1)

2s
},

g{bd(Rp2n, Rp2n+1), bd(Rp2n−1, Rp2n), bd(Rp2n+1, Rp2n),
bd(Rp2n, Rp2n)bd(Rp2n+1, Rp2n−1)

1 + bd(Rp2n, Rp2n+1)
}]
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Ψ(2s2bd(Rp2n, Rp2n+1)) 6 CΨmax[g{bd(Rp2n−1, Rp2n), bd(Rp2n, Rp2n−1), 0},

g{bd(Rp2n, Rp2n+1), bd(Rp2n−1, Rp2n), 0}]

Ψ(2s2bd(Rp2n, Rp2n+1)) 6 CΨ [bd(Rp2n−1, Rp2n)]

bd(Rp2n, Rp2n+1) 6
C

2s2
[bd(Rp2n−1, Rp2n)]

bd(Rp2n−1, Rp2n) 6
C

2s2
[bd(Rp2n−2, Rp2n−1)]

bd(Rp2n, Rp2n+1) 6 kbd(Rp2n−1, Rp2n) 6 ..... 6 k2nbd(Rp0, Rp1) .

Since, 0 6 k < 1 taking limit n→∞ we have: bd(Rp2n, Rp2n+1)→ 0 .

Further, we show {Rp2n} is bd− Cauchy sequence.
Consider m > 0, n > 0 with m > n, by use of definition

bd(Rp2n, Rp2m) 6 s [bd(Rp2n, Rp2n+1) + bd(Rp2n+1, Rp2m)]

6 sbd(Rp2n, Rp2n+1) + s2bd(Rp2n+1, Rp2n+2) + s3bd(Rp2n+2, Rp2n+3) . . .

6 sk2nbd(Rp0, Rp1) + s2k2n+1bd(Rp0, Rp1) + s3k2n+2bd(Rp0, Rp1) + . . .

= sk2nbd(Rp0, Rp1)
[
1 + sk + (sk)2 + (sk)3 + . . .

]
6

s

1− sk
k2nbd(Rp0, Rp1) .

Taking limit for (n,m)→∞ we have bd(Rp2n, Rp2m)→ 0 as sk < 1 .

Therefore, {Rp2n} is a bd− Cauchy sequence in (B, bd) .

Hence, Rp2n → t and similarly Pp2n → t .

By using definition of g we have

Ψ(2s2bd(Rp2n, Rp2n+1)) 6 CΨmax[{bd(Rp2n+1, Rp2n), bd(Rp2n, Rp2n+1}

Ψ(2s2bd(Rp2n, Rp2n+1)) 6 CΨ{bd(Rp2n+1, Rp2n)} ,

we can write it as:

Ψ(2s2bd(Pp2n+1, Rp2n+1)) 6 CΨ{bd(Rp2n+1, Pp2n+1)} .

As p2n+1 → t and R,P are continuous mappings so,we can have Rp2n+1 → Rt

and Pp2n+1 → Pt .
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Now, by applying property of Ψ that is Ψ(αt) > 0 iff t = 0, where α > 0, c > 2

and s > 1 , we have:

Ψ(2s2bd(Pt,Rt)) 6 CΨ{bd(Rt, P t)}

0 6 Ψ{(C − 2s2)bd(Rt, P t)} = 0 ,

because Ψ(αbd(Pt,Rt)) > 0 , (bd(Pt,Rt)) = 0 , where α = (C − 2s2) . Therefore,
we have Pt = Rt .

Put p = t, and q = pn

Ψ(2s2bd(Rt,Rpn)) 6 CΨmax[g{bd(Pt, Ppn), bd(Rt, P t), bd(Rpn, Ppn),
bd(Rt, Ppn)bd(Pt,Rpn)

2s
},

g{bd(Rt,Rpn), bd(Pt,Rt), bd(Rpn, Ppn),
bd(Rt, Ppn)bd(Rpn, P t)

1 + bd(Rt,Rpn)
}] .

Taking limit n→∞, we have

Ψ(2s2bd(Rt, t)) 6 CΨmax[g{bd(Pt, t), bd(Rt, P t), bd(t, t),
bd(Rt, t)bd(Pt, t)

2s
},

g{bd(Rt, t), bd(Pt,Rt), bd(t, t),
bd(Rt, t)bd(t, P t)

1 + bd(Rt, t)
}]

Ψ(2s2bd(Rt, t)) 6 CΨmax[g{bd(Rt, t), bd(Rt,Rt), bd(t, t),
bd(Rt, t)bd(Rt, t)

2s
},

g{bd(Rt, t), bd(Rt,Rt), bd(t, t),
bd(Rt, t)bd(t, Rt)

1 + bd(Rt, t)
}] .

Using definition of g

Ψ(2s2bd(Rt, t)) 6 CΨmax{bd(Rt, t), bd(Rt, t)}

Ψ(2s2bd(Rt, t)) 6 CΨ{bd(Rt, t)}

0 6 Ψ{(C − 2s2)bd(Rt, t)}

(bd(Rt, t)) = 0

Rt = t = Pt .

Hence, common fixed point of (R,P ) is ′t′ .
Uniqueness:
For (R,P ), assume t 6= t0 be two common fixed points.
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Put p = t, q = t0 .

Ψ(2s2bd(Rt,Rt0)) 6 CΨmax[g{bd(Pt, P t0), bd(Rt, P t), bd(Rt0, P t0),
bd(Rt, P t0)bd(Pt,Rt0)

2s
},

g{bd(Rt,Rt0), bd(Pt,Rt), bd(Rt0, P t0),
bd(Rt, P t0)bd(Rt0, P t)

1 + bd(Rt,Rt0)
}]

Ψ(2s2bd(t, t0)) 6 CΨmax[g{bd(t, t0), bd(t, t), bd(t0, t0),
bd(t, t0)bd(t, t0)

2s
},

g{bd(t, t0), bd(t, t), bd(t0, t0),
bd(t, t0)bd(t0, t)

1 + bd(t, t0)
}]

Ψ(2s2bd(t, t0)) 6 CΨmax{bd(t, t0)bd(t, t0)}

Ψ(2s2bd(t, t0)) 6 CΨ{bd(t, t0)}

0 6 Ψ{(C − 2s2)bd(t, t0)}

bd(t, t0) = 0

t = t0 .

Therefore fixed point is unique. �

Example 1. Let (B, bd) = [0, 1] is complete b-dislocated metric space on B, a func-
tion g(t1, t2, t3, t4) = max{t1, t2, t3, t4},Ψ(αt) > 0, where s > 1 is a parameter.
Define a mapping which satisfies

Rp =

1
8
p ; p ∈ [0, 1)

1
6

; p = 1

and

Pp =

1
5
p ; p ∈ [0, 1)

1
3

; p = 1

Clearly it is seen that (B, bd) = [0, 1] is complete b-dislocated metric space on B.
Now, we satisfy following cases:

Case 1. When p, q ∈ [0, 1)] we have

Ψ(2s2bd(Rp,Rq)) 6 CΨmax[g{bd(Pp, Pq), bd(Rp, Pp), bd(Rq, Pq),
bd(Rp, Pq)bd(Pp,Rq)

2s
},

g{bd(Rp,Rq), bd(Pp,Rp), bd(Rq, Pq),
bd(Rp, Pq)bd(Rq, Pp)

1 + bd(Rp,Rq)
}] ,
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and putting the value we have

Ψ(2s2bd(
p

8
,
q

8
)) 6 CΨmax[g{bd(

p

5
,
q

5
), bd(

p

8
,
p

5
), bd(

q

8
,
q

5
),
bd(

p
8
, q
5
)bd(

p
5
, q
8
)

2s
},

g{bd(
p

8
,
q

8
), bd(

p

5
,
p

8
), bd(

q

8
,
q

5
),
bd(

p
8
, q
5
)bd(

q
8
, p
5
)

1 + bd(
p
8
, q
8
)
}] .

Using p = 1
2
, q = 1

4

Ψ(2s2bd(
p
8
, q
8
)) 6 CΨmax[{bd(p5 ,

q
5
), bd(

p
5
, p
8
)}]

Ψ(2s2bd(
p
8
, q
8
)) 6 CΨ{bd(p5 ,

p
8
)}

and s = 1

Ψ(0.03125) 6 CΨ(0.06875)

As Ψ is non-decreasing function and C > 2 . Therefore L.H.S 6 R.H.S

Case 2. When q < p = 1 we have:

Ψ(2s2bd(
1

6
,
q

8
)) 6 CΨmax[g{bd(

1

3
,
q

5
), bd(

1

6
,
1

3
), bd(

q

8
,
q

5
),
bd(

1
6
, q
5
)bd(

1
3
, q
8
)

2s
},

g{bd(
1

6
,
q

8
), bd(

1

3
,
1

6
), bd(

q

8
,
q

5
),
bd(

1
6
, q
5
)bd(

q
8
, 1
3
)

1 + bd(
1
6
, q
8
)
}]

using p = 1, q = 1
2

Ψ(2s2bd(
1
6
, q
8
)) 6 CΨmax{bd(13 ,

q
5
), bd(

1
3
, 1
6
)}

Ψ(2s2bd(
1
6
, q
8
)) 6 CΨ{bd(13 ,

q
5
)}

Ψ(0.208) 6 CΨ(0.167)

As Ψ is non-decreasing function and C > 2 . Therefore L.H.S 6 R.H.S

Case 3. When p < q = 1 we have:

Ψ(2s2bd(
p

8
,
1

6
)) 6 CΨmax[g{bd(

p

5
,
1

3
), bd(

p

8
,
p

5
), bd(

1

6
,
1

3
),
bd(

p
8
, 1
3
)bd(

p
5
, 1
6
)

2s
},

g{bd(
p

8
,
1

6
), bd(

p

5
,
p

8
), bd(

1

6
,
1

3
),
bd(

p
8
, 1
3
)bd(

1
6
, p
5
)

1 + bd(
p
8
, 1
6
)
}]

using p = 1
2
, q = 1

Ψ(2s2bd(
p
8
, 1
6
)) 6 CΨmax{bd(p8 ,

p
5
), bd(

p
5
, p
8
)}

Ψ(2s2bd(
1
6
, q
8
)) 6 CΨ{bd(p5 ,

p
8
)}

Ψ(−0.208) 6 CΨ(0.038)

As Ψ is non-decreasing function and C > 2 . Therefore L.H.S 6 R.H.S
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Case 4. When p = q = 1 we have:

Ψ(2s2bd(
1

6
,
1

6
)) 6 CΨmax[g{bd(

1

3
,
1

3
), bd(

1

6
,
1

3
), bd(

1

6
,
1

3
),
bd(

1
6
, 1
3
)bd(

1
3
, 1
6
)

2s
},

g{bd(
1

6
,
1

6
), bd(

1

3
,
1

6
), bd(

1

6
,
1

3
),
bd(

1
6
, 1
3
)bd(

1
6
, 1
3
)

1 + bd(
1
6
, 1
6
)
}]

Ψ(2s2bd(
1
6
, 1
6
)) 6 CΨmax{bd(16 ,

1
3
), bd(

1
3
, 1
6
)}

Ψ(2s2bd(
1
6
, 1
6
)) 6 CΨ{bd(13 ,

1
6
)}

Ψ(0) 6 CΨ(0.167)

As Ψ is non-decreasing function and C > 2 . Therefore L.H.S 6 R.H.S

Definition 3.2. Let (B, bd) is complete b-dislocated metric space and R, and P :

B → B are self mappings which satisfy:

s2bd(Rp,Rq) 6 αmax {bd(Rp,Rq), bd(Rp, Pp), bd(Rq, Pq), bd(Rp, Pq), bd(Rq, Pp)}

for all p, q belongs B, α ∈ [0, 1
2
] and s > 1.

Then R and P are called a s− α quasi-contraction.

Further, the existence of common fixed point for extended s−α quasi-contraction
for two mappings on complete b-dislocated metric spaces is shown.

Theorem 3.2. Consider the pair (R,P ) of self mappings on a complete b-dislocated
metric space (B, bd) where g ∈ G4, α ∈ [0, 1

2
] s.t

s2bd(Rp,Rq) 6 αg {bd(Rp,Rq), bd(Rp, Pp), bd(Rq, Pq), bd(Rp, Pq), bd(Rq, Pp)}

R(B) ⊆ P (B) and R , P are weakly compatible. Then R and P have a unique
common fixed point.

Proof. Consider p0 be arbitrary element in B. Because R(B) ⊆ P (B), we can
define a sequence,

{Rp0, Rp1, Rp2, . . . , Rp2n, Rp2n+1, . . . }

s.t Rp2n = Pp2n+1 for n is non-negative integers.
Now, to show the sequence is a Cauchy sequence, using p = p2n and q = p2n+1,

we have:

s2bd(Rp2n, Rp2n+1) 6 αg{bd(Rp2n, Rp2n+1), bd(Rp2n, Pp2n), bd(Rp2n+1, Pp2n+1),

bd(Rp2n, Pp2n+1), bd(Rp2n+1, Pp2n)} .
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As Rp2n = Pp2n+1 for n is non-negative integers we have:

s2bd(Rp2n, Rp2n+1) 6 αg {bd(Rp2n, Rp2n+1), bd(Rp2n, Pp2n), bd(Rp2n+1, Rp2n), ,

bd(Rp2n, Rp2n)bd(Rp2n+1, Rp2n)} ,

s2bd(Rp2n, Rp2n+1) 6 αg {bd(Rp2n, Rp2n+1), bd(Rp2n, Pp2n), 0, bd(Rp2n+1, Pp2n)}

s2bd(Rp2n, Rp2n+1) 6 αg {bd(Rp2n, Rp2n+1), bd(Rp2n, Rp2n−1), bd(Rp2n+1, Pp2n)}

6 α {bd(Rp2n−1, Rp2n)}

bd(Rp2n, Rp2n+1) 6
α

s2
bd(Rp2n−1, Rp2n) .

Similarly,

bd(Rp2n−1, Rp2n) 6
α

s2
bd(Rp2n−2, Rp2n−1) .

Now we have , for all n > 0

bd(Rp2n, Rp2n+1) 6 kbd(Rp2n−1, Rp2n) 6 .... 6 k2nbd(Rp0, Rp1) ,

k = α
s2

; 0 6 k < 1.
Taking limit n→∞ we get bd(Rp2n, Rp2n+1)→ 0 .

Further, to prove {Rp2n} is bd− Cauchy sequence, we consider m > 0, n > 0

with m > n, using definition

bd(Rp2n, Rp2m) 6 s [bd(Rp2n, Rp2n+1) + bd(Rp2n+1, Rp2m)] ,

6 sbd(Rp2n, Rp2n+1) + s2bd(Rp2n+1, Rp2n+2) + s3bd(Rp2n+2, Rp2n+3) . . .

6 sk2nbd(Rp0, Rp1) + s2k2n+1bd(Rp0, Rp1) + s3k2n+2bd(Rp0, Rp1) + . . .

= sk2nbd(Rp0, Rp1)
[
1 + sk + (sk)2 + (sk)3 + . . .

]
6

s

1− sk
k2nbd(Rp0, Rp1) .

Taking limit for (n,m)→∞ we have bd(Rp2n, Rp2m)→ 0 as sk < 1 .

Therefore, {Rp2n} is a bd− Cauchy sequence in (B, bd).
Since, limn→∞Rp2n = limn→∞ Pp2n+1 = h ∈ P (B) therefore, ∃ l ∈ B s.t

P (l) = h . We claim that Pl = Rl. If not then with p = l, q = p2n, we have

s2bd(Rl,Rp2n) 6 αg {bd(Rl,Rp2n), bd(Rl, P l), bd(Rp2n, Pp2n), bd(Rl, Pp2n), bd(Rp2n, P l)} .
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Taking limn→∞ we get,

s2bd(Rl, h) 6 αg {bd(Rl, h), bd(Rl, P l), bd(h, h), bd(Rl, h), bd(h, P l)}

s2bd(Rl, P l) 6 αg {bd(Rl, h), bd(Rl, P l), 0, bd(h, h), bd(h, h)}

s2bd(Rl, P l) 6 αg {bd(Rl, P l), bd(Rl, P l), 0, bd(h, h), bd(h, h)}

s2bd(Rl, P l) 6 α {bd(Rl, P l)} .

bd(Rl, P l) 6
α

s2
{bd(Rl, P l)} < bd(Rl, P l) ,

which is a contradiction, since
α

s2
< 1.

Hence, Rl = Pl , and therefore coincidence point of (R,P ) is ′l′. We are given
with weakly compatible pair (R,P ). So, Ph = PRl = RPl = Rh .

Next, we prove h is a common fixed point. We claim that, Rh = h . Again
using p = h, y = l

s2bd(Rh,Rl) 6 αg {bd(Rh,Rl), bd(Rh, Ph), bd(Rl, P l), bd(Rh, P l), bd(Rl, Ph)}

s2bd(Rh, h) 6 αg {bd(Rh, h), bd(Rh, Ph), bd(h, h), bd(Rh, h), bd(h, Ph)}

s2bd(Rh, h) 6 αg {bd(Rh, h), bd(Rh,Rh), bd(h, h), bd(Rh, h), bd(h,Rh)}

s2bd(Rh, h) 6 αg {bd(Rh, h)} .

bd(Rh, h) 6
α

s2
{bd(Rh, h)} ,

which is not possible, since α
s2
< 1.

Hence Rh = h or Ph = h. Therefore h is common fixed point of (R,P ). �
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