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SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS
BY MODIFIED ADOMIAN DECOMPOSITION METHOD

NUHA MOHAMMED DABWAN AND YAHYA QAID HASAN1

ABSTRACT. In this study, we have solved the fractional differential equation
by using the Modified Adomian Decomposition Method (MADM). The approxi-
mate analytical solution of this equation is obtained.

1. INTRODUCTION

Fractional differential equations are very important in many fields like fluid
mechanics, biology, physics, engineering, electrochemistry of corrosion, viscoelas-
tic, and electrical networks [4].

The Adomian decomposition method [1-3,5] is one of the most frequently
used for computing solutions of linear and non-linear ordinary, partial, frac-
tional differential equations, where it introduced by mathematician George Ado-
mian in 1980s. For the case α = 1, Hasan has obtained the approximate analyt-
ical solution to this equation by using Adomian decomposition method [8]. The
goal of this study to introduce a new differential operator to study singular and
nonsingular fractional differential equations.
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2. ADOMIAN METHOD

In this study, we consider the fractional differential equation:

(2.1) Dα
xy + p(xα)y = f(x)− g(x, y),

subject to condition

y(0) = A,

where 0 < α ≤1,
we write equation (2.1) in the standard operator form

(2.2) Lαy = f(x)− g(x, y),

where

Lα(.) = e
∫
−p(xα)dxα d

α

dxα
e
∫
p(xα)dxα(.),

and the inverse fractional operator L−1α is given by

(2.3) L−1α (.) = e
∫
−p(xα)dxα

∫ x

0

e
∫
p(xα)dxα(.)dxα.

By applying equation (2.3) on equation (2.2), we get

(2.4) y(x) = δ(x) + L−1α f(x)− L−1α g(x, y).

The general solution of the given equation is decomposed into the sum

(2.5) y(x) =
∞∑
n=0

yn(x).

The non-linear part can be decomposed into the infinite polynomial series ob-
tained by

(2.6) g(x, y) =
∞∑
n=0

An,

where the elements yn(x) of the solution y(x) will be determined repeatable.
Specific algorithms were seen [6,7] to formulate Adomian polynomials. The
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following algorithm:

A0 = G(y0),

A1 = y1G
′(y0),

A2 = y2G
′(y0) +

1

2!
y21G

′′(y0),

A3 = y3G
′(y0) + y1y2G

′′(y0) +
1

3!
y31G

′′′(y0),(2.7)

. . .

can be used to build Adomian polynomials, when G(y) is any function. From
(2.4),(2.5) and (2.6) we have

∞∑
n=0

yn(x) = δ(x) + L−1α f(x)−+L−1α

∞∑
n=0

An.

The component y(x) can be given by using Adomian decomposition method as
follows

y0 = δ(x) + L−1α f(x),

y(n+1) = −L−1α An, n ≥ 0,

thus

y0 = δ(x) + L−1α f(x),

y1 = L−1α A0,

y2 = L−1α A1,

y3 = L−1α A2,(2.8)

. . .

Using the equations (2.7) and (2.8) we can determine the components yn(x),
and hence the series solution of y(x) in (2.5) can be immediately obtained. For
numerical purposes, the n-term approximate

ζn =
n−1∑
k=0

yk,

can be used to approximate the exact solution.
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3. APPLICATIONS

In this section, some examples are given to demonstrate the applicability and
accuracy of our method.

Example 1. Consider the linear fractional differential equation:

(3.1) Dα
xy +

α

xα
y = α cosxα +

α

xα
sinxα,

y(0) = 0.

The exact solution is y(x) = sinxα. We put

Lα(.) =
1

xα
dα

dxα
xα(.).

So

L−1α (.) =
1

xα

∫ x

0

xα(.)dxα.

In an operator form equation (3.1) becomes

(3.2) Lαy = α cosxα +
α

xα
sinxα.

By applying L−1α to both side of (3.2) we have

y(x) = sinxα.

Example 2. Consider the nonlinear fractional differential equation:

(3.3) Dα
xy + 3αx2αy = αex

α

+ 3αy(ln y)2,

y(0) = 1.

The exact solution is y(x) = ex
α
. We put

Lα(.) = e−x
3α dα

dxα
ex

3α

(.).

So

L−1α (.) = e−x
3α

∫ x

0

ex
3α

(.)dxα.

In an operator form equation (3.3) becomes

(3.4) Lαy = αex
α

+ 3αy(ln y)2.

By applying L−1α to both side of (3.4) we have

y(x) = e−x
3α

+ e−x
3α

∫ x

0

ex
3α+xα(.)dxα + 3αL−1α y(ln y)2.
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y0 = e−x
3α

+ e−x
3α

∫ x

0

ex
3α+xα(.)dxα.

yn+1 = 3αL−1α An, n ≥ 0.

Then

y0 = 1+xα+
x2α

2
− 5x3α

6
− 17x4α

24
− 7x5α

24
+
301x6α

720
+
1531x7α

5040
+
4411x8α

40320
+ . . . ,

y1 = x3α +
3x4α

4
− 9x5α

10
− 5x6α

3
− 127x7α

280
+

353x8α

320
+ . . . ,

y2 =
6x5α

5
+

5x6α

4
− 183x7α

140
− 253x8α

80
+ . . . ,

y3 =
51x7α

35
+

39x8α

20
− 1027x9α

560
− 51x10α

35
+ . . . ,

therefore
y(x) = y0 + y1 + y2 + y3 =

1+xα+
x2α

2
+
x3α

6
+
x4α

24
+
x5α

120
+
x6α

720
+
x7α

5040
+

x8α

40320
− 1027x9α

560
− 51x10α

35
+ . . . .

TABLE 1. Approximate Solution of Example 2 for different values
of α and absolute error at α = 1

Approximate
solutions
by ADM

Exact Error

x α = 0.99 α = 0.98 α = 0.97 α = 1 α = 1 yExact − yMADM

0.0 1.000 1.000 1.000 1.000 1.000 0.000
0.1 1.10775 1.11039 1.1131 1.10517 1.10517 0.000
0.3 1.35472 1.35971 1.36477 1.34981 1.34986 0.00005
0.5 1.64913 1.65458 1.6600 1.64372 1.64872 0.00500
0.7 1.89972 1.90075 1.90168 1.89859 2.01375 0.11516
0.9 1.23121 1.22128 1.21123 1.24103 2.4596 1.21857

Example 3. Consider the non-linear fractional differential equation:

(3.5) Dα
xy + αxαy = (2α + αx2α + x3α)xα − y2,

y(0) = 0.



4766 N. M. DABWAN AND Y. Q. HASAN

The exact solution is y(x) = x2α. We put

Lα(.) = e−
x2α

2
dα

dxα
e
x2α

2 (.).

So

L−1α (.) = e−
x2α

2

∫ x

0

e
x2α

2 (.)dxα.

In an operator form equation (3.5) becomes

(3.6) Lαy = (2α + αx2α + x3α)xα − y2.

By applying L−1α to both side of (3.6) we have

y(x) = L−1α ((2α + αx2α + x3α)xα)− L−1α y2.

y0 = x2α +
x5α

5α
− x7α

35α
+

x9α

315α
+ . . . ,

yn+1 = −L−1α An, n ≥ 0.

Then

y0 = x2α +
x5α

5α
− x7α

35α
+

x9α

315α
+ . . . ,

y1 =
−x8α

20α2
+

3x10α

280α2
− x5α

5α
+
x7α

35α
− x9α

315α
+ . . . ,

y2 =
x8α

20α2
− 3x10α

280α2
+ . . . ,

therefore
y(x) = y0 + y1 + y2 = x2α.

4. CONCLUSIONS

The ADM is a powerful tool in applied mathematics and engineering and
have been applied for solving linear and non-linear differential equation. In
this study, the application of MADM is investigated to obtain the exact solution
of linear and non-linear fractional differential equations. Solving some exam-
ples show that the MADM is efficient and easy techniques for obtaining analytic
solution of linear and non-linear fractional differential equations.
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