

Advances in Mathematics: Scientific Journal 9 (2020), no.7, 4843-4851

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.7.50

A DECOMPOSITION OF NANO SEMI-*I*-CONTINUITY

V. INTHUMATHI, S. KRISHNAPRAKASH¹, AND S. NARMATHA

ABSTRACT. In this paper, we introduce the notions of nano $\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -sets, nano \mathcal{A}_{δ}^* - \mathcal{I} -sets and nano $\mathcal{A}_{\mathcal{I}\delta}^*$ -sets and investigate some of their basic properties. Also, we introduce the notions of their respective continuous functions and we obtain the decomposition of nano semi- \mathcal{I} -continuity and nano α - \mathcal{I} -continuity in nano ideal topological spaces.

1. Introduction and Preliminaries

M. L. Thivagar [3] introduced the notion of nano topology which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it. Let U be a non-empty, finite universe of objects and R be an equivalence relation on U and $X \subseteq U$. Let $\tau_R(X) = \{U, \phi, U_R(X), L_R(X), B_R(X)\}$. Then $\tau_R(X)$ is a topology on U, called as the nano topology with respect to X. An Ideal \mathcal{I} [7] on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following conditions: (1) $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$ and (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with ideal \mathcal{I} on X. If P(X) is the family of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, called a local function, see [6], of A with respect to τ and \mathcal{I} is defined as follows: For $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I}$, for all $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$ [3]. The

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 45B05, 45D05.

Key words and phrases. nano $\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -sets, nano \mathcal{A}_{δ}^* - \mathcal{I} -sets and nano $\mathcal{A}_{\mathcal{I}\delta}^*$ -sets, nano semi- \mathcal{I} -continuity, nano α - \mathcal{I} -continuity.

topological space together with ideal on X is called an ideal topological space and it is denoted by (X, τ, \mathcal{I}) . A nano topological space $(U, \tau_R(X))$ with an ideal \mathcal{I} on U is called a nano ideal topological space [4] or nano ideal space and is denoted by $(U, \tau_R(X), \mathcal{I})$.

Let $(U, \tau_R(X), \mathcal{I})$ be a nano ideal topological space. A set operator $(A)^{*N}: P(U) \to P(U)$, is called the nano local function, see [5], of \mathcal{I} on U with respect to \mathcal{I} on $\tau_R(X)$, is defined as $(A)^{*N} = \{x \in U \cap A \notin \mathcal{I}; \text{ for all } U \in \tau_R(X)\}$ and is denoted by $(A)^{*N}$, where nano closure operator is defined as $NCl^*(A) = A \cup (A)^{*N}$. Let A be a subset of a nano topological space $(U, \tau_R(X))$, then A is said to be regular open [3] (resp.nano regular closed [3]), if A = NInt(NCl(A)) (resp. A = NCl(NInt(A))). Let A be a subset of a nano ideal topological space $(U, \tau_R(X), \mathcal{I})$, then A is said to be nano semi- \mathcal{I} -open [4] (resp. nano α - \mathcal{I} -open [4], nano regular- \mathcal{I} -open (nano R- \mathcal{I} -open) [4], nano pre- \mathcal{I} -open [2], nano β - \mathcal{I} -open [1], nano strong β - \mathcal{I} -open [1], nano δ - \mathcal{I} -open, nano \mathcal{I}_δ set), if $A \subseteq NCl^*(NInt(A))$, (resp. $A \subseteq NInt(NCl^*(NInt(A)))$, $A \subseteq NCl^*(NInt(NCl^*(A)))$, $A \subseteq NCl^*(NInt(NCl^*(A)))$, $NInt(NCl^*(A))$, $NInt(NCl^*(A))$, $NInt(A^*) \subseteq (NInt(A))^*$).

A mapping $f: \mathcal{U}_{\mathcal{I}} \to \mathcal{U}_1$ is said to be nano semi- \mathcal{I} -continuous [4] (resp. nano δ - \mathcal{I} -continuous [1], nano strong β - \mathcal{I} -continuous [1], nano α - \mathcal{I} -continuous [4], nano pre- \mathcal{I} -continuous [2]) if for every $V \in \tau_{R_1}(X_1)$, $f^{-1}(V)$ is a nano semi- \mathcal{I} -open set (resp. nano δ - \mathcal{I} -open set, nano strong β - \mathcal{I} -open set, nano pre- \mathcal{I} -open set).

2. Nano $\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -sets, nano \mathcal{A}_{δ}^* - \mathcal{I} -sets and nano $\mathcal{A}_{\mathcal{I}\delta}^*$ -sets

Definition 2.1. Let A be a subset of a nano ideal topological space $\mathcal{U}_{\mathcal{I}}$, then A is said to be a:

- (i) nano $\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set (briefly $\mathcal{N}\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set), if $A = S \cap V$, where S is a nano closed set and V is a nano regular- \mathcal{I} -open set.
- (ii) nano \mathcal{A}_{δ}^* - \mathcal{I} -set (briefly $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set), if $A = S \cap V$, where S is a nano closed set and V is a nano δ - \mathcal{I} -open set.
- (iii) nano $A_{I\delta}^*$ -set (briefly $NA_{I\delta}^*$ -set), if $A = S \cap V$, where S is a nano closed set and V is a nano \mathcal{I}_{δ} -set.

Proposition 2.1. Let A be a subset of a nano ideal topological space $\mathcal{U}_{\mathcal{I}}$. Then the following hold:

- (1) If A is a nano closed set in $\mathcal{U}_{\mathcal{I}}$, then A is a $\mathcal{N}\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.
- (2) If A is a nano regular- \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$, then A is a $\mathcal{N}\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.
- *Proof.* (1). Let A be a nano closed set in $\mathcal{U}_{\mathcal{I}}$. Then $A = U \cap A$, where U is a nano regular- \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$, which implies A is a $\mathcal{NA}^*_{\mathcal{R}}$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.
- (2). Let A be a nano regular- \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$. Then $A = U \cap A$, where U is a nano closed set in $\mathcal{U}_{\mathcal{I}}$. Therefore A is a $\mathcal{N}\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.

Remark 2.1. The converse of the Proposition 2.1 need not be true as shown in the following example.

Example 1. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}\}$, $X = \{b, d\}$, $\tau_R(X) = \{\phi, U, \{a, b, d\}, \{a\}, \{a, b\}\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}\}$. Then $\{d\}$ is a $\mathcal{NA}_{\mathcal{R}}^*$ - \mathcal{I} -set but not a nano closed set in $\mathcal{U}_{\mathcal{I}}$. The set $\{a, b, c\}$ is a $\mathcal{NA}_{\mathcal{R}}^*$ - \mathcal{I} -set but not a nano regular- \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$.

Theorem 2.1. Let A and B be subsets of a nano ideal topological space $\mathcal{U}_{\mathcal{I}}$. Then the following hold:

- (1) If A and B are nano regular- \mathcal{I} -open, then $A \cap B$ is nano regular- \mathcal{I} -open.
- (2) If A is nano regular open, then it is nano regular- \mathcal{I} -open.
- (3) If A is nano regular- \mathcal{I} -open, then it is nano δ - \mathcal{I} -open.
- *Proof.* (1). Let A and B be nano regular open sets. Then, we have $A \cap B = NInt(NCl^*(A) \cap NInt(NCl^*(B)) = NInt(NCl^*(A) \cap NCl^*(B)) \supseteq NInt(NCl^*(A \cap B)) \supseteq NInt(A \cap B) = A \cap B$. Thus, $A \cap B = NInt(NCl^*(A \cap B))$ which implies $A \cap B$ is a nano regular- \mathcal{I} set.
- (2). Let A be a nano regular open. Since τ^* is finer than τ we have $A = NInt(A) \subseteq NInt(NCl^*(A)) \subseteq NInt(NCl(A)) = A$. Hence $A = NInt(NCl^*(A))$. Therefore A is nano regular- \mathcal{I} -open.
- (3). Let A be nano regular- \mathcal{I} -open, then we have $A = NInt(NCl^*(A))$, which implies $NIntA = NInt(NCl^*(A)) \Rightarrow NInt(NCl^*(A)) \subseteq NInt(A) \subseteq NCl^*(NInt(A))$. Therefore $NInt(NCl^*(A)) \subseteq NCl^*(NInt(A))$. Hence A is nano δ - \mathcal{I} -open. \square

Proposition 2.2. Every nano δ - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$ is a nano \mathcal{I}_{δ} -set in $\mathcal{U}_{\mathcal{I}}$.

Proof. Let A be a nano δ - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$. Then we have $NInt(NCl^*(A)) \subseteq NCl^*(NInt(A)) \Rightarrow NInt(A \cup A^*) \subseteq ((NInt(A)^* \cup (NInt(A)))$. Now, $NInt(A) \cup NInt(A^*) \subseteq ((NInt(A)^* \cup (NInt(A)))$ which shows that $(NInt(A^*) \subseteq (NInt(A))^*$. Thus A is a nano \mathcal{I}_{δ} -set in $\mathcal{U}_{\mathcal{I}}$.

Proposition 2.3. Let A be a subset of a nano ideal topological space $\mathcal{U}_{\mathcal{I}}$. Then the following hold:

- (1) If A is a nano regular open in $\mathcal{U}_{\mathcal{I}}$, then A is nano δ - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$.
- (2) If A is a nano regular open in $\mathcal{U}_{\mathcal{I}}$, then A is a nano \mathcal{I}_{δ} -set in $\mathcal{U}_{\mathcal{I}}$.

Proof. (1). Let A be a nano regular-open set in $\mathcal{U}_{\mathcal{I}}$. By Proposition 2.1 (2), A is nano regular- \mathcal{I} -open in $\mathcal{U}_{\mathcal{I}}$. By Proposition 2.1.(3), A is a nano δ - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$.

(2). Let A be a nano regular-open set in $\mathcal{U}_{\mathcal{I}}$. By (1) A is nano δ - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$. Thus, by Proposition 2.2, A is nano \mathcal{I}_{δ} -set in $\mathcal{U}_{\mathcal{I}}$.

Proposition 2.4. Intersection of two $\mathcal{NA}_{\mathcal{R}}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$ is a $\mathcal{NA}_{\mathcal{R}}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.

Proof. Since the intersection of two nano closed sets is a nano closed and intersection of two nano regular- \mathcal{I} -open set is nano regular- \mathcal{I} -open, The proof follows immediately.

Remark 2.2. The following examples shows that

- (1) The converse of the Proposition 2.3 need not be true.
- (2) The union of two nano $\mathcal{N}\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set need not be a $\mathcal{N}\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.

Example 2. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}\}$, $X = \{b, d\}$, $\tau_R(X) = \{\phi, U, \{a, b, d\}, \{d\}, \{a, b\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. Then,

- (1) The set $\{a\}$ is a nano δ - \mathcal{I} -open set and nano \mathcal{I}_{δ} -set but not a nano regular-open set in $\mathcal{U}_{\mathcal{I}}$.
- (2) The sets $A = \{d\}$ and $B = \{a, b\}$ are $\mathcal{NA}_{\mathcal{R}}^*$ - \mathcal{I} sets but the set $A \cup B = \{a, b, d\}$ is not a $\mathcal{NA}_{\mathcal{R}}^*$ - \mathcal{I} set in $\mathcal{U}_{\mathcal{I}}$.

Proposition 2.5. Let $\mathcal{U}_{\mathcal{I}}$ be a nano ideal topological space. Then the following hold:

- (1) Every nano regular- \mathcal{I} -open set is nano open.
- (2) Every nano δ - \mathcal{I} -open set is a $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set.
- (3) Every nano \mathcal{I}_{δ} -set ia a $\mathcal{N} \mathcal{A}_{\delta}^*$ - \mathcal{I} -set.

- *Proof.* (1). Let A be a nano regular- \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$. Then $A = NInt(NCl^*(A))$, which shows that $NInt(A) = NInt(Cl^*(A))$. Now, $A = NInt(Cl^*(A))$ which implies $A \subseteq NInt(Cl^*(A)) = NInt(A)$. Also, we know that $NInt(A) \subseteq A$. Therefore A = NInt(A) and hence A is a nano open set in $\mathcal{U}_{\mathcal{I}}$.
- (2). Let A be a δ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$. Then $A = A \cap U$, where U is nano closed in $\mathcal{U}_{\mathcal{I}}$. Thus, A is a $\mathcal{N} \mathcal{A}_{\delta}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.
- (3). Let A be a nano \mathcal{I}_{δ} -set in $\mathcal{U}_{\mathcal{I}}$. Then $A = A \cap U$, where U is nano closed in $\mathcal{U}_{\mathcal{I}}$. Thus, A is a $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.

Proposition 2.6. For a subset A of a nano ideal topological space $\mathcal{U}_{\mathcal{I}}$, the following hold:

- (1) Every $\mathcal{N}\mathcal{A}^*$ -set is a $\mathcal{N}\mathcal{A}^*_{\mathcal{R}}$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.
- (2) Every $\mathcal{N}\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set is a $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.
- (3) Every $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set is a $\mathcal{N}\mathcal{A}_{\mathcal{I}\delta}^*$ -set in $\mathcal{U}_{\mathcal{I}}$.
- *Proof.* (1). Let A be an $\mathcal{N}\mathcal{A}^*$ -set in $\mathcal{U}_{\mathcal{I}}$. Then $A = S \cap V$, where S is a nano closed set and V is a nano regular open set in $\mathcal{U}_{\mathcal{I}}$. By Proposition 2.1(2), V is a nano regular- \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$, which implies A is a $\mathcal{N}\mathcal{A}^*_{\mathcal{R}}$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.
- (2). Let A be a $\mathcal{N}\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$. Then $A = S \cap V$, where S is a nano closed set and V is a nano regular- \mathcal{I} open set in $\mathcal{U}_{\mathcal{I}}$. By Proposition 2.1 (3), V is a nano δ - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$, which implies A is a $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.
- (3). Let A be a \mathcal{NA}_{δ}^* - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$. Then $A = S \cap V$, where S is a nano closed set and V is a nano δ - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$. By Proposition 2.2, V is a nano \mathcal{I}_{δ} -set in $\mathcal{U}_{\mathcal{I}}$, which implies A is a $\mathcal{NA}_{\mathcal{I}_{\delta}}^*$ -set in $\mathcal{U}_{\mathcal{I}}$.

Remark 2.3. The following examples shows that the converses of the Proposition 2.6 need not be true.

Example 3. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, c\}, \{b\}, \{d\}\}\}$, $X = \{a, b\}$, $\tau_R(X) = \{\phi, U, \{a, b, c\}, \{b\}, \{a, c\}\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}\}$. Then $\{a, b, c\}$ is a $\mathcal{NA}_{\mathcal{R}}^*$ - \mathcal{I} -set and but not a \mathcal{NA}^* -set in $\mathcal{U}_{\mathcal{I}}$.

Example 4. Let $U = \{a, b, c\}$, $U/R = \{\{a, b\}, \{c\}\}\$, $X = \{c\}$, $\tau_R(X) = \{\phi, U, \{c\}\}\$ and $\mathcal{I} = \{\phi, \{c\}\}\$. Then

- (1) The set $\{a\}$ is a $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set but not a $\mathcal{N}\mathcal{A}_{\mathcal{R}}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.
- (2) The set $\{b,c\}$ is a $\mathcal{N}\mathcal{A}_{\mathcal{I}\delta}^*$ -set but not a $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.

3. Decomposition of Nano Semi- \mathcal{I} -continuity

Definition 3.1. A mapping $f: \mathcal{U}_{\mathcal{I}} \to \mathcal{U}_1$ is said to be \mathcal{NA}^*_{δ} - \mathcal{I} -continuous if for every $V \in \tau_{R_1}(X_1)$, $f^{-1}(V)$ is \mathcal{NA}^*_{δ} - \mathcal{I} -set.

Proposition 3.1. Every nano α - \mathcal{I} -open set is a nano pre- \mathcal{I} -open.

Proof. Let A be a nano α - \mathcal{I} -open set. Then we have, $A \subseteq NInt(NCl^*(NInt(A))) \subseteq NInt(NCl^*(A))$. Therefore A is nano pre- \mathcal{I} -open.

Proposition 3.2. Let $\mathcal{U}_{\mathcal{I}}$ be a nano ideal topological spaces. Then a subset A of $\mathcal{U}_{\mathcal{I}}$ is nano semi- \mathcal{I} -open in $\mathcal{U}_{\mathcal{I}}$ if and only if A is nano δ - \mathcal{I} -open and nano strong β - \mathcal{I} -open in $\mathcal{U}_{\mathcal{I}}$.

Proof. Necessity. Let A be a nano semi- \mathcal{I} -open set. Then we have $A \subseteq NCl^*(NInt(A))$, which implies, $A \subseteq NCl^*(NInt(A)) \subseteq NCl^*(NInt(NCl^*(A)))$. Thus, $A \subseteq NCl^*(NInt(NCl^*(A)))$ which shows that A is nano strong β - \mathcal{I} -open. Now since A is nano semi- \mathcal{I} -open, we have $A \subseteq NCl^*(NInt(A)) \Rightarrow NCl^*(A) \subseteq NCl^*(NCl^*(NInt(A))) \Rightarrow NCl^*(A) \subseteq NCl^*(NInt(A)) \Rightarrow NInt(NCl^*(A)) \subseteq NCl^*(A) \subseteq NCl^*(NInt(A))$. Thus, $NInt(NCl^*(A)) \subseteq NCl^*(NInt(A))$. Hence A is nano δ - \mathcal{I} -open.

Sufficiency. Let A be a nano δ - \mathcal{I} -open and nano strong β - \mathcal{I} -open in $(U, \tau_R(X), \mathcal{I})$, then we have $NInt(NCl^*(A)) \subseteq NCl^*(NInt(A))$ and $A \subseteq NCl^*(NInt(NCl^*(A)))$. Thus we get, $A \subseteq NCl^*(NInt(NCl^*(A))) \subseteq NCl^*(NCl^*(NInt(A)))$ which implies $A \subseteq NCl^*(NInt(A))$. Thus A is nano semi- \mathcal{I} -open. \square

Remark 3.1. The following examples shows that the concept of nano δ - \mathcal{I} -open sets and nano strong β - \mathcal{I} -open sets are independent.

Example 5. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}\}$, $X = \{b, d\}$, $\tau_R(X) = \{\phi, U, \{a, b, d\}, \{d\}, \{a, b\}\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}\}$. Then,

- (1) The set $\{c\}$ is a nano δ - \mathcal{I} -open set but not a nano strong β - \mathcal{I} -open set.
- (2) The set $\{b,c\}$ is a nano strong β - \mathcal{I} -open set but not a nano δ - \mathcal{I} -open set.

Theorem 3.1. Let $\mathcal{U}_{\mathcal{I}}$ be a nano ideal topological space. A subset A of $\mathcal{U}_{\mathcal{I}}$ is nano α - \mathcal{I} -open in $\mathcal{U}_{\mathcal{I}}$ if and only if A is nano pre- \mathcal{I} -open and $\mathcal{N} \mathcal{A}_{\delta}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$.

Proof. Necessity: Let A be a nano α - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$. By Proposition 3.1(2), A is a nano pre- \mathcal{I} -open set. By Proposition 3.1 (3), A is a nano semi- \mathcal{I} -open set in

 $\mathcal{U}_{\mathcal{I}}$. Since A is a nano semi- \mathcal{I} -open in $\mathcal{U}_{\mathcal{I}}$. A is nano δ - \mathcal{I} -open in $\mathcal{U}_{\mathcal{I}}$, by Theorem 3.2. Since A is δ - \mathcal{I} -open in $\mathcal{U}_{\mathcal{I}}$, it is an $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$, by Proposition 2.5 (2). Therefore, A is both nano pre- \mathcal{I} -open and $NA_{\delta}^*\mathcal{I}$ set in $\mathcal{U}_{\mathcal{I}}$.

Sufficiency: Let A be a nano pre- \mathcal{I} -open and \mathcal{NA}_{δ}^* - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$. Since A is nano pre- \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$, $A \subseteq NInt(NCl^*(A))$. Since A is a \mathcal{NA}_{δ}^* - \mathcal{I} -set in $\mathcal{U}_{\mathcal{I}}$, $A = S \cap V$, where S is nano closed and V is nano δ - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$. Now, $A \subseteq NInt(NCl^*(A)) = NInt(NCl^*(S \cap V)) \subseteq NInt((NCl^*(S) \cap NCl^*(V))) = NInt((NCl^*(S)) \cap NInt(NCl^*(V))) \subseteq NInt(S) \cap NCl^*(NInt(V))$, (since V is a nano δ - \mathcal{I} -open set in $\mathcal{U}_{\mathcal{I}}$.) $\subseteq NCl^*(NInt(S) \cap NInt(V)) = NCl^*(NInt(S \cap V)) = NCl^*(NInt(A))$. Thus $A \subseteq NCl^*(NInt(A))$. But $A \subseteq NInt(NCl^*(A)) \subseteq NInt(NCl^*(NInt(A)))$. Therefore $A \subseteq NInt(NCl^*(NInt(A)))$. Hence $A \subseteq NInt(NCl^*(NInt(A)))$.

Remark 3.2. The concept of nano pre- \mathcal{I} -open and $\mathcal{N}\mathcal{A}_{\delta}^*$ - \mathcal{I} -set are independent as shown in the following examples.

Example 6. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, c\}, \{b\}, \{d\}\}\}$, $X = \{a, b\}$, $\tau_R(X) = \{\phi, U, \{a, b, c\}, \{b\}, \{a, c\}\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{a, b\}\}\}$. Then,

- (1) The set $\{c\}$ is a nano pre- \mathcal{I} -open set but not $\mathcal{N}\mathcal{A}_{\delta}^*\mathcal{I}$ -set.
- (2) The set $\{a, b, d\}$ is $\mathcal{NA}^*_{\delta}\mathcal{I}$ -set but not nano pre- \mathcal{I} -open set.

Remark 3.3. The notion of nano δ - \mathcal{I} -continuity is independent of notion of strong β - \mathcal{I} -continuity, as seen from the following examples.

Example 7. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}\}$, $X = \{b, d\}$, $\tau_R(X) = \{\phi, U, \{a, b, d\}, \{d\}, \{a, b\}\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}\}$. Let $U_1 = \{x, y, z, w\}$, Let $U_1/R_1 = \{\{x, y\}, \{z\}, \{w\}\}\}$, $X_1 = \{z\}$, $\tau_{R_1}(X_1) = \{\phi, U_1, \{z\}\}\}$. Now define $f : \mathcal{U}_{\mathcal{I}} \to \mathcal{U}_1$ as f(a) = x, f(b) = y, f(c) = z, f(d) = w. Then f is nano δ - \mathcal{I} -continuous but not nano strong β - \mathcal{I} -continuous.

Example 8. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}\}$, $X = \{b, d\}$, $\tau_R(X) = \{\phi, U, \{a, b, d\}, \{d\}, \{a, b\}\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}\}$. Let $U_1 = \{x, y, z, w\}$, $U_1/R_1 = \{\{x, y\}, \{z\}, \{w\}\}\}$, $X_1 = \{x, y\}$, $\tau_{R_1}(X_1) = \{\phi, U_1, \{x, y\}\}\}$. Now define $f : \mathcal{U}_{\mathcal{I}} \to \mathcal{U}_1$ as f(a) = w, f(b) = x, f(c) = y, f(d) = w. Then f is nano strong β - \mathcal{I} -continuous but not nano δ - \mathcal{I} -continuous.

Remark 3.4. The notion of nano pre- \mathcal{I} -continuity is independent of notion of $\mathcal{N}A_{\delta}^*$ - \mathcal{I} -continuity, as seen from the following examples.

Example 9. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, c\}, \{b\}, \{d\}\}\}$, $X = \{a, b\}$, $\tau_R(X) = \{\phi, U, \{a, b, c\}, \{b\}, \{a, c\}\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{a, b\}\}\}$. Let $U_1 = \{x, y, z, w\}$, $U_1/R_1 = \{\{x, y\}, \{z\}, \{w\}\}\}$, $X_1 = \{z\}$, $\tau_{R_1}(X_1) = \{\phi, U_1, \{z\}\}\}$. Now define $f: \mathcal{U}_{\mathcal{I}} \to \mathcal{U}_1$ as f(a) = x, $f(b_1) = y$, f(c) = z, f(d) = w. Then f is nano pre- \mathcal{I} -continuous but not \mathcal{NA}_{δ}^* - \mathcal{I} -continuous.

Example 10. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, c\}, \{b\}, \{d\}\}\}$, $X = \{a, b\}$, $\tau_R(X) = \{\phi, U, \{a, b, c\}, \{b\}, \{a, c\}\}\}$, $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{a, b\}\}\}$, $U_1 = \{x, y, z, w\}$, $U_1/R_1 = \{\{x, y\}, \{z\}, \{w\}\}\}$, $X_1 = \{x, y, z\}$, $\tau_{R_1}(X_1) = \{\phi, U_1, \{x, y, z\}\}$. Now define $f: \mathcal{U}_{\mathcal{I}} \to \mathcal{U}_1$ as f(a) = x, f(b) = y, f(c) = w, f(d) = z. Then f is \mathcal{NA}_{δ}^* - \mathcal{I} -continuous but not nano pre- \mathcal{I} -continuous.

Theorem 3.2. For a mapping $f: \mathcal{U}_{\mathcal{I}} \to \mathcal{U}_1$, then, f is nano semi- \mathcal{I} -continuous if and only if f is nano δ - \mathcal{I} -continuous and nano strong β - \mathcal{I} -continuous.

Theorem 3.3. For a mapping $f: \mathcal{U}_{\mathcal{I}} \to \mathcal{U}_1$, then, f is nano α - \mathcal{I} -continuous if and only if f is nano pre- \mathcal{I} -continuous and $\mathcal{N}A_{\delta}^*$ - \mathcal{I} -continuous.

REFERENCES

- [1] V. INTHUMATHI, S. NARMATHA, S. KRISHNAPRAKASH: Decompositions of nano R-I-continuity, Int. J. Adv. Sci. Tech., **29**(2) (2020), 2578-2582.
- [2] V. INTHUMATHI, M. PARVEEN BANU, R. ABINPRAKASH: Decomposition of nano α - \mathcal{I} open sets, IOP Conf. Series: Journal of Physics: Conf. Series, **1139** (2018), 012086.
- [3] M. LELLIS THIVAGAR, C. RICHARD: On nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1) (2013), 31-37.
- [4] M. LELLIS THIVAGAR, V. SUTHA DEVI: New sort of operators in nano ideal topology, Ultra Scientist, **28**(1) (2016), 51-64.
- [5] M. PARIMALA, S. JAFARI: On Some New notions in nano ideal topological spaces, International Balkan Journal of mathematics, 1(3) (2018), 85-92.
- [6] R. VAIDYANATHASWAMY: *The localization in set topology*, Proc. Indian Acad. Sci., **20** (1945), 51-61.
- [7] R. VAIDYANATHASWAMY: Set topology, Chelsea Publishing Company, New York, 1946.

DEPARTMENT OF MATHEMATICS
NGM COLLEGE, POLLACHI-INDIA

 $\it E\text{-}mail\ address: inthumathi65@gmail.com}$

DEPARTMENT OF MATHEMATICS

KARPAGAM COLLEGE OF ENGINEERING, COIMBATORE-INDIA

 $\hbox{\it E-mail address:} \verb| mskrishnaprakash@gmail.com|\\$

DEPARTMENT OF MATHEMATICS

SRI KRISHNA ARTS AND SCIENCE COLLEGE, COIMBATORE-INDIA

E-mail address: narmatha27101993@gmail.com