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STABILITY AND BOUNDEDNESS PROPERTIES
OF A RATIONAL EXPONENTIAL DIFFERENCE EQUATION

J. LEO AMALRAJ, M. MARIA SUSAI MANUEL, D. S. DILIP, AND P. VENKATA MOHAN REDDY1

ABSTRACT. This article aims to discuss, the stability and boundedness character
of the solutions of the rational equation of the form

(0.1) yt+1 =
νρ−yt + δρ−yt−1

µ+ νyt + δyt−1
, t ∈ N(0).

Here, ρ > 1, ν, δ, µ ∈ (0,∞) and y0, y1 are taken as arbitrary non-negative reals
and N(a) = {a, a + 1, a + 2, · · · }. Relevant examples are provided to validate
our results. The exactness is tested using MATLAB.

1. INTRODUCTION

In the past few decades, the theory of difference equations has grown at an
accelerated pale. Its importance is very much noticed in applicable analysis and
continue to play an active role in mathematics as a whole. Difference equa-
tions manifest themselves as mathematical models describing real life situations
in probability theory, queuing theory, statistical analysis, stochastic time series,
combinatorial analysis, number theory, geometry, electrical networks, genetics
in biology, economics, psychology, sociology etc. Usually these are considered
as the discrete analogues of differential equations.

Discrete differential equations, normally preserve symmetries. But often, the
qualitative properties of solutions of difference equations are quite different

1corresponding author
2010 Mathematics Subject Classification. 39A22.
Key words and phrases. Boundedness, Equilibrium, Global asymptotic stability, Rational

Equation.
4945



4946 J. LEO AMALRAJ, M. MARIA SUSAI MANUEL, D. S. DILIP, AND P. VENKATA MOHAN REDDY

from those of the corresponding differential equations solutions of several well
known difference equations like Clairatu’s, Euler’s, Riccati’s, Bernouilli’s Ver-
hulst’s Mathieu’s and Volterra’s difference equations preserve most of the prop-
erties of the corresponding differential equations [1–4].

The study on the oscillation and asymptotic properties of solutions of differ-
ence equations gain momentum in the last few decades. Heretic research activ-
ity happens on this area and lot of research articles are available on the study
of the qualitative properties of solutions of difference equations. But it is rare to
find articles on the study of properties of solutions like stability and periodicity.
Particularly for rational difference equations involving the exponential function,
the focus is not much.

Interestingly, many exiting applications are noticed in biology involving dif-
ference equations involving exponential terms. To cite an example, the au-
thors [11] studied the oscillatory and chaotic nature of difference equation

(1.1) Bt+1 = µN
eν−δLt

1 + eν−δLt
, Lt+1 =

L2
t

Lt + d
+ µsN

eν−δLt

1 + eν−δLt
, s ∈ (0, 1).

Equation (1.1) refers to the evolution of a perennial grass, usually depends on
the biomass, the litter mass and the total soil nitrogen. In (1.1), Bt refers to the
living mass, Lt, the litter mass, Nt the total soil nitrogen respectively ν, δ, µ,
d > 0 are fixed positive constants and t refer to time.

El-Metwally et all [7] have investigated the global stability, boundedness and
periodicity of the positive difference equation

yt+1 = α + βyt−1e
−yt , t ∈ N(0) ,

where α, β > 0 are the immigration rate and the population growth respectively
and the initial conditions y0 and y1 are arbitrary nonnegative numbers.

Ozturk et all [8,9] have studied the boundedness and asymptotic behavior of
the difference equations

yt+1 =
α + βe−yt

γ + yt−1

, and

yt+1 =
αe−(tyt+(t−s)yt−s)

β + yt + (t− s)yt−s
, t ∈ N(0)

where α, β > 0 and s ∈ N(1) and the initial conditions y−j are reals for
j = 0, 1, 2, · · · , s.
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G. Papaschinopoulos et all [10] established boundedness and the persistence
of the positive solutions, the existence, and the global asymptotic stability of the
unique positive equilibrium and the existence of periodic solutions concerning
the biological model

yt+1 =
νy2

t

yt + δ
+ µ

es−dyt

1 + es−dyt
,

where δ, µ, d, s and 0 < a < 1, are positive constants and y0 is a real number.
F. Bozkurt in [5] discussed stability behaviour of the equation

(1.2) yt+1 =
αe−yt + βe−yt−1

γ + αyt + βyt−1

, t ∈ N(0).

Here, the initial conditions are taken as arbitrary reals and α, β are positive
numbers.

In this paper, we generalize (1.2) and establish new conditions for stability
and other behaviors of the equations (0.1) for ρ > 1. MATLAB is used to test the
exactness of the behavior of the solutions.

2. PRELIMINARIES

In this section we give some basic definitions and a theorem which is used to
prove our main results.

Definition 2.1. [6] Let f : I × I → I, I ∈ R, be a continuous function and
y0, y−1 ∈ I be given values. Then, for

(2.1) yt+1 = g(yt, yt−1), t ∈ N(1)

ȳ ∈ I is called equilibrium of (2.1) if g(ȳ, ȳ) = ȳ.

Definition 2.2. [6] Let p =
∂g

∂u
(ȳ, ȳ) and q =

∂g

∂v
(ȳ, ȳ) denote the partial deriva-

tives of f(u, v) evaluated at an equilibrium ȳ of (0.1). Then the equation

(2.2) yt+1 = pyt + qyt−1, t ∈ N(0)

is called the linearized equation associated with (0.1) about the equilibrium point
ȳ.

The auxillary equation of (2.2) is the equation

(2.3) λ2 − pλ− q = 0
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with characteristic roots λ± =
p±

√
p2 + 4q

2
.

Theorem 2.1. (Linearized stability) [6]

(i) If two roots of (2.3) are in the region |ρ| < 1, then we have an equilibrium
ȳ of (0.1) which is asymptotically and locally stable.

(ii) If at least one of the roots of (2.3) is in the region |ρ| < 1, then the equilib-
rium ȳ of (0.1) is unstable.

(iii) The two roots of (2.3) will lie in the open region |ρ| < 1 if and only if

|p| < 1− q < 2.

This locally asymptotically stable equilibrium point ȳ is called a sink.
(iv) The magnitude of one of the two roots of (2.3) is more than unity if and

only if

|1− q| > |p| and |q| > 1.

This equilibrium point ȳ is called a repeller.
(v) The absolute value of one of the roots of (2.3) is more than unity and the

other has absolute value less than unity if and only if

|p| > |1− q| and p2 + 4q > 0.

and this unstable equilibrium point ȳ is called a saddle point.
(vi) If a root of (2.3) has absolute value unity, then |p| = |1 − q| or q = −1

and |p| ≤ 2. Conversely, if |p| = |1 − q| or q = −1 and |p| ≤ 2 then we
get one root whose absolute value is equal to unity and hence we get the
equilibrium point ȳ, which is non hyperbolic.

3. MAIN RESULTS

Here, we discuss the existence, uniqueness and stability of the equation (0.1).
First, let us prove the existence and uniqueness of solutions of (0.1).

Solving ȳ =
(ν + δ)ρ−ȳ

µ+ (ν + δ)ȳ
we get equilibrium solutions.

Consider F (y) =
(ν + δ)ρ−y

µ+ (ν + δ)y
− y.
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Clearly F (0) =
ν + δ

µ
> 0 and lim

y→∞
F (y) = −∞.

This gives us the existence of equilibrium ȳ.

F ′(y) = −
(ν + δ)ρ−y

(
µ ln ρ+ (ν + δ)(y ln ρ+ 1)

)
(µ+ (ν + δ)y)2

− 1 < 0 ,

which implies that F is decreasing and hence, the equilibrium ȳ is unique.

Theorem 3.1. Equation (0.1) has the following properties.

(i) Every positive solution of equation (0.1) is bounded.
(ii) The unique equilibrium point ȳ > 0 of the equation (0.1) is bounded.

Proof. (i) Let {yt} satisfies equation (0.1) and

0 < yt+1 =
νρ−yt + δρ−yt−1

µ+ νyt + δyt−1

<
ν + δ

c
.

Hence (i) is true.
(ii) Similarly

0 < ȳ =
νρ−ȳ + δρ−ȳ

µ+ νȳ + δȳ
<
ν + δ

µ
.

Hence (ii) is true. �

Theorem 3.2. Let δ > ν and
(3.1)

δρ
−

(2δµ− νµ) ln ρ

ν(ν − δ)(ln ρ+ 2)− 2δ2 ln ρ <
(
µ+

((ν + δ) ln ρ− δ)(2δµ− νµ) ln ρ

ν(ν − δ)(ln ρ+ 2)− 2δ2 ln ρ

)
ln ρ.

Then, the equilibrium point ȳ > 0 of (0.1) is locally asymptotically stable.

Proof. From Definition 2.2, we get the linearized equation and the characteristic
equation associated with (0.1) about ȳ is

yt+1 +
ν(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ
yt +

δ(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ
yt−1 = 0, n ∈ N(0)

and

(3.2) µ2 +
ν(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ
µ+

δ(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ
= 0,

respectively. From Theorem 2.1 we obtain

(3.3)
∣∣∣∣− ν(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ

∣∣∣∣ < 1 +
δ(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ
< 2.
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Taking 1 + δ(ρ−ȳ+ȳ)
(µ+(ν+δ)ȳ) ln ρ

< 2 we obtained

(3.4) ρ−ȳ <
(µ+ (ν + δ)ȳ) ln ρ− δȳ

δ
,

Taking
∣∣∣− ν(ρ−ȳ+ȳ)

(µ+(ν+δ)ȳ) ln ρ

∣∣∣ < 2 we obtained

(3.5) ρ−ȳ <
(µ+ (ν + δ)ȳ) ln ρ

ν − δ
− ȳ

From (3.3) we arrive

(3.6) ρ−ȳ <
2(µ+ (ν + δ)ȳ) ln ρ− νȳ

ν
.

(3.5)⇒ (ν − δ)ȳ < (µ+ (ν + δ)ȳ) ln ρ+ (δ − ν)ρ−ȳ.
Substituting (3.6), we get

ȳ <
(2δµ− νµ) ln ρ

ν(ν − δ)(ln ρ+ 2)− 2δ2 ln ρ
.

Again substituting in (3.4), we get

δρ
−

(2δµ− νµ) ln ρ

ν(ν − δ)(ln ρ+ 2)− 2δ2 ln ρ <
(
µ+

((ν + δ) ln ρ− δ)(2δµ− νµ) ln ρ

ν(ν − δ)(ln ρ+ 2)− 2δ2 ln ρ

)
ln ρ.

�

Theorem 3.3. (i) Equilibrium solution ȳ is nonrepeller.
(ii) Equilibrium solution ȳ is not a saddle point.

(iii) Equilibrium solution ȳ is a nonhyperbolic point when ν ≤ 2δ.

Proof. (i). From (3.2) and from Theorem 2.1 (iv), we get

(3.7)
∣∣∣∣ δ(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ

∣∣∣∣ > 1

and

(3.8)
∣∣∣∣ ν(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ

∣∣∣∣ < ∣∣∣∣1− δ(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ

∣∣∣∣ .
Substituting (3.7) in (3.8) we get ν < 0 which contradicts our assumption that
ν > 0. Thus the equilibrium solution ȳ is nonrepeller.
(ii). From (3.2) and from Theorem 2.1 (v), we get

(3.9) (µ+ (ν + δ)ȳ) ln ρ >
−ν2(ρ−ȳ + ȳ)

4δ
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and

(3.10)
∣∣∣∣ ν(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ

∣∣∣∣ > ∣∣∣∣1− δ(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ

∣∣∣∣ .
Substituting (3.9) in (3.10) we get 4νδ > ν2 + 4δ2.
This is not possible since ν > 0 and δ > 0 are constants. Therefore, no equilib-
rium solution is a saddle point.
(iii). From (3.2) and from Theorem 2.1 (vi), we get

(3.11) (µ+ (ν + δ)ȳ) ln ρ = −δ(ρ−ȳ + ȳ)

and

(3.12)
∣∣∣∣ ν(ρ−ȳ + ȳ)

(µ+ (ν + δ)ȳ) ln ρ

∣∣∣∣ ≤ 2.

Substituting (3.11) in (3.12) we get ν < 2δ. �

4. EXAMPLES

In this section we present suitable examples to illustrate our main results.
The following example validates Theorem 3.1.

Example 1. For ν = 3, δ = 5, µ = 2 and ρ = 3, y−1 = 4, y0 = 2.5, we get
y21 = 0.7862 < 4. In Table 1, numerical values of yt from the initial values to
y23 shows they are bounded. Moreover the plot of yt shown in Figure 1 clears the
solutions are all bounded.

TABLE 1. Values of yt from the initial values to y23.

t 0 1 2 3 4 5 6 7
yt 4.0007 2.5000 0.0086 0.2267 2.6777 0.3632 0.1382 1.4022
t 8 9 10 11 12 13 14 15
yt 0.7160 0.2164 0.7436 0.9879 0.3712 0.4575 0.9832 0.5587
t 16 17 18 19 20 21 22 23
yt 0.3866 0.7842 0.7219 0.4291 0.5995 0.7862 0.5237 0.5059

The following example illustrate Theorem 3.2
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FIGURE 1. Plot of yt which shows the boundedness.

Example 2. For ν = 3, δ = 5, µ = 2, ρ = 3 and condition (3.1) of the Theorem
3.2 does not hold, then every positive equilibrium solution of (0.1) is not locally
asymptotically stable. Moreover, Figure 2 shows the equilibrium solution of (0.1)
is unstable.

FIGURE 2. Plot of yt which shows the unstability.
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The following example is to illustrate the results of Theorem 3.3

Example 3. For ν = δ = µ and for ρ = 2 we get equilibrium solution ≈ 0.65 which
is a nonhyperbolic point. Refer Figule 3.

5. CONCLUSION

In this paper, we discuss the different characters like stability and bound-
edness of the solutions of the rational exponential difference equation (0.1) .
Earlier results exist for similar type of difference equation when the independent



STABILITY AND BOUNDEDNESS PROPERTIES OF A . . . 4953

FIGURE 3. Plot of yt shows the equilibrium solution is a nonhy-
perbolic point.
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variable is raised as a power of e. Here we have generalized the results when the
independent variable is raised to any ρ > 1. Earlier results are available only on
the study of the stability of the solutions but, we have analyzed more characters
like boundedness and the asymptotic behavior of solutions of the equation (0.1)
which is new in the literature. Suitable examples are provided to validate our
results and they are verified with MATLAB.
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