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OSCILLATION OF A CLASS OF THIRD ORDER GENERALIZED
FUNCTIONAL DIFFERENCE EQUATION

P. VENKATA MOHAN REDDY1 AND M. MARIA SUSAI MANUEL

ABSTRACT. This paper aims to study and establish certain criteria on behavior
of third order generalized functional difference equations. The authors provide
sufficient condition to obtain sequence solution converging to zero to the above
said equation. Findings are validated by providing suitable examples.

1. INTRODUCTION

Difference equations and functional equations usually occur due to certain phe-
nomena over time and play essential roles in the field of discrete dynamical
systems [1]. Difference equation and their associated operators play a vital role
as direct mathematical models of physical phenomena but also provide powerful
tools in numerical methods. Difference and its equations also occur in a com-
bined form with differential equations, commonly called differential-difference
equations yielding luxurious models, particularly in control theory. Difference
equations are widely used in the philosophy of probability, biology, engineer-
ing, social and behavioral sciences. Oscillation is one more significant and in-
terest topic of qualitative properties of solutions of certain class of difference-
functional-equations. Active research is on in the last few decades in analyzing
the solution of equations involving ∆ but the study on the same property for
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difference equations involving ∆` is rare. For the theory related to the relevant
topic, one can refer [2], [4], [7], [8], [9], [10].

This research aims to obtain condition for getting oscillatory and convergent
solution for the class of 3rd order generalized functional difference equation

(1.1) ∆`

([
∆`

(
[∆`z(n)]β1

)
a1(n)

]β2
a2(n)

)
+ q(n)f(x(g(n))) = 0, n ≥ n0,

where z(n) = x(τ(n))p(n) + x(n). We also present sufficient conditions for se-
quence solution converging to origin. Here, ∆` is the forward generalized dif-
ference operator defined by ∆`y(n) ≡ y(n + `) − y(n) = x(n), n ∈ N`(n0),
n0 ∈ [0,∞), ` ∈ (0,∞) and its inverse is defined by

(1.2) y(n) = y(n0 + j) +

[n−n0−j−`` ]∑
t=0

x(n0 + j + t`),

Consider the notations given below:

(a) N`(b) = {b, `+ b, 2`+ b, . . . },N1(b) = N(b).
(b) j = n− ni −

[
n−ni
`

]
`, ni ∈ [0,∞), ni + j = n̄i.

(c) {ai(n)} is a positive increasing sequence and satisfies the condition
∞∑

s=n0

1

a
1/βi
i (s)

=∞, i = 1, 2 for all n ≥ n0.

(d) 0 < q(n), p(n) ≥ 0, p ∈ [p(n), 1).
(e) Integer sequences {g(n)} & {τ(n)}, n ≥ g(n), ∆`g(n) > 0,

lim
t→∞

τ(t) =∞, lim
t→∞

g(t) =∞.

(f) β1 and β2 are odd positive quotients with β = β1β2.

(g) 0 < k ≤ f(x)

xβ
.

2. BASIC DEFINITIONS AND LEMMAS

We revisit basic definitions and lemmas to derive our main results.

Lemma 2.1. [6] Let ` ∈ [0,∞) and n(λ)
` =

λ∏
t=0

(n− t`).Then

∆`(n
(λ)
` ) = (λ`)n

(λ−1)
` .

Lemma 2.2. [6] If x and y are two real valued functions, then

∆`{x(t)y(t)} = x(t+ `)∆`y(t) + y(t)∆`x(t) .
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Lemma 2.3. [3] If u, v > 0 and u 6= v, then

rvr−1(u− v) < ur − vr < rur−1(u− v), r < 0, r > 1 ,

rur−1(u− v) < ur − vr < rvr−1(u− v), 0 < r < 1 .

There is obviously equality when r = 0, r = 1 or u = v.

Definition 2.1. If x(n) satisfies (1.1) and x(n2)x(n2 + `) ≤ 0, n2 ∈ N(n1) for any
n1 ∈ [a,∞), then it is called oscillatory. Otherwise non oscillatory.

3. PRELIMINARIES

We establish in this section, oscillation and convergence criteria to (1.1). The
following notations are introduced.

E0(n) = z(n), Ei(n) = ai(n) (∆`Ei−1(n))βi , i = 1, 2

RN(n) =
1

a
1/β1
1 (n)

n−N−`−j∑̀
r=0

1[
a2(N̄ + r`)

]1/β2
1/β1

and

RN(n) =

n−N−`−j∑̀
r=0

RN(N̄ + r`).

Lemma 3.1. If {x(t)} is a positive function of solution of (1.1), then for large t,

(i) z(t) > 0, ∆`z(t) > 0 and ∆`E1(t) > 0,
(ii) z(t) > 0, ∆`z(t) < 0 and ∆`E1(t) > 0.

Proof. Consider a positive function of solution of (1.1) and ∃ n1 ≥ n0 such that
0 < x(t), 0 < x(τ(t)) and 0 < x(g(t)), t ≥ t1. Then 0 < z(t) and equation (1.1)
yields

∆`E2(t) = −f(x(g(t)))q(t) ≤ 0.

Hence, E2(t) is a non increasing function and it is positive or negative eventually.
We shall show that 0 < E2(t) for t1 ≤ t. Suppose that E2(t) < 0, t1 ≤ t2 ≤ t,
there exists K1 > 0 for t2 ≤ t3, we have

∆`E1(t) < −K1 [a2(t)]−1/β2 < 0, for t ≥ t3.
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Hence, by equation (1.2)

E1(t) ≤ E1(t3 + j)−

t−t3−`−j∑̀
r=0

K1

[a2(t3 + j + r`)]1/β2
.

Letting t → ∞, from (c) we have lim
t→∞

E1(t) = −∞, ∃ a t3 ≤ t4 and K2 > 0 and

∆`z(t) < −K2 [a1(t)]−1/β1 , t ∈ N(t0). Adding from t4 to t, we get

z(t) ≤ z(t4 + j)−

t−t4−`−j∑̀
r=0

K2

[a1(t4 + j + r`)]1/β1
.

Allowing t → ∞ and using condition (c), give z(t) → −∞. That is z(t) < 0

eventually which is contradictory to z(t) > 0. Therefore ∆`E1(t) is positive,
that is ∆`E1(t) > 0 holds. It can be shown from ∆`E1(t) > 0 that, ∆`z(t) is
monotonically increasing sign in the interval [t1,∞), therefore ∆`z(t) is either
negative or positive, which yields (i) and (ii). �

Lemma 3.2. Let x be a positive function which is a solution of (1.1), and satisfies
the condition (ii) of Lemma 3.1. If
(3.1)

∞∑
t=0

1

a
1/β1
1 (n̄3 + t`)


t−n2−`−j∑̀
s=0

1

a
1/β2
2 (n̄2 + s`)

 s−n1−`−j∑̀
r=0

q(n̄1 + r`)


1
β2


1
β1

=∞,

then x(n)→ 0 and z(n)→ 0 as n→∞.

Proof. From the given condition, we have lim
n→∞

z(n) = γ ≥ 0. We prove that

γ = 0. Suppose that, then γ > 0, and for any ε > 0, γ < z(n) < γ + ε eventually

for sufficiently large n. Choose 0 < ε <
1− p
p

γ. Then we have

x(n) = z(n)− x(τ(n))p(n) > γ − z(τ(n))p(n) > L(γ + ε) > Lz(n),

where L =
γ − p(γ + ε)

γ + ε
> 0. Hence, from equation (1.1) and (g), we have

∆`E2(n) ≤ −(g(n))kq(n)xβ < −(g(n))kLβq(n)zβ < −q(n)kLβγβ .
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Therefore, by equation (1.2), summing this inequality form n1 to n− `, we get

∆`E1(n) >
(k

1
βLγ)

β
β2

a
1/β2
2 (n)

n−n1−`−j∑̀
r=0

q(n1 + j + r`)

1/β2

.

Summing again form n2 to n− `, we obtain

∆`z(n) <
−C

a
1/β1
1 (n)


n−n2−`−j∑̀

s=0

1

a
1/β2
2 (n̄2 + s`)

 s−n1−`−j∑̀
r=0

q(n1 + j + r`)

1/β2


1/β1

,

where C = k
1
βLγ. If we add the all the above inequalities, we will get

z(n) < −C
∞∑
t=0

1

a
1/β1
1 (n3+j+t`)

 t−n2−`−j∑̀
s=0

1

a
1/β2
2 (n̄2+s`)

 s−n1−`−j∑̀
r=0

q(n1 + j + r`)

 1
β2


1
β1

,

which contradicts (3.1). This complete the proof. �

Lemma 3.3. Assume the property (i) of Lemma 3.1 and z(n) > 0 be a function of
solution of equation (1.1). Then we have

(3.2) ∆`E2(n) ≤ −kq(n)zβ(g(n))(1− p(g(n)))β,

(3.3) ∆`z(g(n)) ≥ E
1/β
2 (n)Rn0(g(n))

and

(3.4) R
β

n0
(g(n))

E2(n)

zβ(g(n))
≤ 1.

Proof. Consider the given condition on x(n) and the equation (1.1). From (e),
x(n) < 0, x(τ(n)) < 0 and x(g(n)) < 0, n0 ≤ n1 ≤ n. The property (i) in Lemma
3.1 yields z(n)(1−p(n)) ≤ x(n) = z(n)−x(τ(n))p(n). Thus, from equation (1.1)
and (g), we have

∆`E2(n) ≤ −xβ(g(n))kq(n) ≤ −zβ(g(n))kq(n)(1− p(g(n)))β < 0.

Again, from property (i), there exists an N ≥ n0 with

E1(n) = E1(N̄) +
m∑
r=0

E
1/β2
2 (N̄ + r`)[

a2(N̄ + r`)
]1/β2 .
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Where m = n−N−`−j
`

, since ∆`E2(n) < 0, we obtain

E1(n) ≥ E
1/β2
2 (n)

n−N−`−j∑̀
r=0

1[
a2(N̄ + r`)

]1/β2 .
This implies that

(3.5) ∆`z(n) ≥ E
1/β
2 (n)RN(n).

Since n ≥ g(n), leads

E
1/β
2 (n)RN(g(n)) ≤ ∆`z(g(n)).

By taking summation in equation (3.5) and using ∆`E2(n) < 0, yields

z(n) ≥ z(N̄) + E
1/β
2 (n)

m∑
r=0

RN(N̄ + r`).

Where m = n−N−`−j
`

, which implies

z(n) ≥ RN(n)E
1/β
2 (n).

Thus, we get
z(g(n)) ≥ E

1/β
2 (n)RN(g(n)),

and so

R
β

N(g(n))
E2(n)

zβ(g(n))
≤ 1,

which is the required inequality. �

Remark 3.1. The following notations can be considered for further derivations.

P = lim inf
n→∞

R
β

n0
(g(n̄+ `))

∞∑
s=n

φ(n̄+ s`) and

and

Q = lim sup
n→∞

[n−n0−j−`` ]∑
s=0

R
β+1

n0
(g(n̄0 + s`+ `))φ(n̄0 + s`)

Rn0(g(n̄+ `))
,

where φ(n) = kq(n)(1 − p(g(n)))β. Moreover for z(n) satisfying property (i), we
define

(3.6) ω(n) =
E2(n)

zβ(g(n))
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and

(3.7) l = lim inf
n→∞

R
β

n0
(g(n̄+ `))ω(n̄+ `).

(3.8) U = lim sup
n→∞

R
β

n0
(g(n+ `))ω(n).

Lemma 3.4. Let x(n) > 0 and be a solution of (1.1).

(1) If P <∞, Q <∞, z(n) holds property (i) of Lemma 3.1 and

(3.9) lim
n→∞

Rn0(n) =∞,

then

(3.10) P ≤ l − βl
1+β
β and P +Q ≤ 1

(2) z(n) does not hold property (i) if either P (or) Q =∞.

Proof. Part(1). From equation (3.6) and given condition, it is easy to obtain

(3.11) ∆`ω(n) =
∆`E2(n)

zβ(g(n))
− (∆`z

β(g(n)))E2(n+ `)

zβ(g(n+ `))zβ(g(n))
.

Now, by using equation (3.3), we find that

∆`z
β(g(n)) < βzβ−1(g(n+ `))∆`z(g(n)).

The equation (3.11) leads

∆`ω(n) =
∆`E2(n)

zβ(g(n))
− ∆`z(g(n))βE2(n+ `)

z(g(n+ `))zβ(g(n))
.

Thus, from (3.2) and (3.3), there exists an N ≥ n0 with the condition

∆`ω(n) ≤ −(1− p(g(n)))βkq(n)− βE
1+β
β

2 (n+ `)RN(g(n+ `))

z1+β(g(n+ `))
, n ≥ N

This leads to get

(3.12) ∆`ω(n) ≤ −φ(n)− βRN(g(n+ `))ω
1+β
β (n+ `).

From (3.4), we get

R
β

N(g(n))ω(n) ≤ 1,

which with (3.9) gives

(3.13) lim
n→∞

ω(n) = 0.
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From equations (3.6), (3.7) and (3.8), we see that

(3.14) 0 ≤ l ≤ U ≤ 1.

Next, we shall prove the first inequality in (3.10). There exists an ε > 0 for
sufficiently large integer n2 ≥ N and from the definitions of P and l, we have

R
β

N(g(n̄+ `))
∞∑
s=0

φ(n̄+ s`) ≥ P − ε and

R
β

N(g(n̄+ `))ω(n̄+ `) ≥ l − ε for n ≥ n2.

By summing (3.12) from n to∞ and using (3.13), we have

ω(n̄) ≥
∞∑
s=0

φ(n̄+ s`) + β
∞∑
s=0

RN(g(n̄+ s`+ `))ω
1+β
β (n̄+ s`+ `).(3.15)

Multiplying the above inequality by R
β

N(g(n̄+ `)), we obtain

ω(n̄)R
β

N(g(n̄+ `)) ≥ ω(n̄)

≥ (P − ε) + (l − ε)
1+β
β βR

β

N(g(n̄+ `))
∞∑
s=0

RN(g(n̄+ s`+ `))

R
1+β

N (g(n̄+ s`+ `))
.

≥ (P − ε) + β(l − ε)
1+β
β .

Taking limit inferior as n→∞ on both sides, we obtain

l ≥ (P − ε) + β(l − ε)
1+β
β .

As ε→ 0, we get

P ≤ l − βl
1+β
β .

Now, we proceed to prove P +Q ≤ 1. Multiplying (3.12) by R
β+1

N (g(n+ `)) and
adding for n2 to n− `, leads

m∑
s=0

R
β+1

N (g(n̄2 + s`+ `))∆`ω(n̄2 + s`)

≤ −
m∑
s=0

φ(n̄2 + s`)R
β+1

N (g(n̄2 + s`+ `))

−β
m∑
s=0

(
R
β

N(g(n̄2 + s`+ `))ω(n̄2 + s`+ `)
) 1+β

β

)
(RN(g(n̄2 + s`+ `)).
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when m = n−n2−j−`
`

. From the product formula for sum of two functions, By
Summation by parts, we obtain

R
β+1

N (g(n+ `))ω(n) ≤ R
β+1

N (g(n̄2 + `))ω(n̄2)

+
m∑
s=0

ω(n̄2 + s`+ `)∆`R
β+1

N (g(n̄2 + s`+ `))

−
m∑
s=0

R
β+1

N (g(n̄2 + s`+ `))φ(n̄2 + s`)

− β
m∑
s=0

(
R
β

N(g(n̄2 + s`+ `))ω(n̄2 + s`+ `)
) 1+β

β

)
(RN(g(n̄2 + s`+ `)).

≤ ω(n̄2)R
β+1

N (g(n̄2 + `))−

n−n2−j−`∑̀
s=0

φ(n̄2 + s`)R
β+1

N (g(n̄2 + s`+ `))

+

n−n2−j−`∑̀
s=0

RN(g(n̄2 + s`+ `))
(

(β + 1)M − βM
1+β
β

)
,

where M = R
β

N(g(n̄2 + s`+ `))ω(n̄2 + s`+ `). Using the inequality

(3.16) Au−Bu
1+β
β ≤ A1+β

Bβ

ββ

(1 + β)1+β

with u = M , A = (1 + β) and B = β, we obtain

ω(n)R
β+1

N (g(n+ `)) ≤ ω(n̄2)R
β+1

N (g(n̄2 + `))

−

n−n2−j−`∑̀
s=0

R
β+1

N (g(n̄2 + s`+ `))φ(n̄2 + s`) +RN(g(n̄+ `)).

It follows

ω(n)R
β

N(g(n+ `)) ≤ ω(n̄2)R
β+1

N (g(n̄2 + `))

RN(g(n̄+ `))

− 1

RN(g(n̄+ `))

n−n2−j−`∑̀
s=0

R
β+1

N (g(n̄2 + s`+ `))φ(n̄2 + s`) + 1.

Taking limit superior on both sides as n→∞ and using (3.9) we get

U ≤ 1−Q.
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Thus, from (3.14), we see that

(3.17) P ≤ l − βl
1+β
β ≤ l ≤ U ≤ 1−Q.

Thus we have proved (3.10).
Part (2). Suppose that x(n) > 0. We shall prove that property (i) will not be
satisfied by z(n). Moreover, it’s assumed that P = ∞. Then, from (3.15), we
have

ω(n)R
β

N(g(n+ `)) ≥
∞∑
s=n

φ(n̄+ s`)R
β

N(g(n+ `))

Taking limit inferior on both sides as n → ∞, we obtain because of (3.14) that
1 ≥ l ≥ P = ∞. This is a contradiction. So we consider the case Q = ∞.
Then by (3.17), U = −∞, which contradicts with the inequality (3.14). This
completes the proof. �

4. MAIN RESULTS

Theorem 4.1. Assume that (3.1) and (3.9) hold. If

(4.1) lim inf
n→∞

R
β

n0
(g(n̄+ `))

∞∑
s=n

φ(n̄+ s`) >
1

(β + 1)β+1
,

then the solution {x(n)} is either oscillatory or lim
n→∞

x(n) = 0.

Proof. Suppose that {x(n)} is a non oscillatory solution of (1.1) and x(n) is
positive. If P = ∞, then Lemma 3.4, the property (i) can not be satisfied by
{x(n)}. That is, z(n) satisfies property (ii). Hence, by Lemma 3.2, x(n) → 0 as
n→∞.

Now, Assume P < ∞. By Lemma 3.1, we have that z(n) either satisfies the
property (i) or the property (ii). If z(n) satisfies property (ii), from Lemma 3.2,
we obtain lim

x→∞
x(n) = 0.

Finally, suppose that z(n) holds property (i). From equations (3.6) and (3.7),
and Lemma 3.4, we have

P ≤ l − βl
β+1
β .

By inequality (3.16) with u = l and A = 1 = B,

P ≤ 1

(1 + β)1+β
,
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which is a contradiction to inequality (4.1). Hence, the theorem is proved. �

Example 1. Consider the third order functional `-difference equation

∆`

(
1

n
∆`

(
1

n
∆`

(
x(n) +

1

2
x(n− 2`)

)))
+

3(4n3 + 10n2`+ 7n`2 + 2`3)

n2(n+ `)2(n+ 2`)
x(n− 2`) = 0.(4.2)

Since β = 1 and f(x) = x, by Theorem 4.1, (4.2) is oscillatory. Clearly, an
oscillatory solution of (4.2) is {x(n)} =

{
(−1)[

n
` ]
}

.

Theorem 4.2. Suppose that conditions (3.1) and (3.9) hold. If

1 < P +Q,

then {xn} is either oscillatory or lim
n→∞

x(n) = 0.

Proof. Suppose that {x(n)} > 0 is a solution of (1.1). If either P or Q assumes
infinity, then z(n) will not satisfy the property (i) of Lemma 3.4, that is, the
property (ii) of Lemma 3.1 has to be satisfied by z(n). Then lim

n→∞
x(n) = 0

follows from Lemma 3.2.
Next, suppose that P and Q are finite. Next we show that, either z(n) satisfies

property (i) or property (ii) by Lemma 3.1. If z(n) satisfies property (ii), then
continuing as above and by Lemma 3.2, we obtain x(n)→ 0 as n→∞.

Finally, suppose that for z(n) satisfies property (i). From Lemma 3.4, we
obtain the inequality P +Q ≤ 1, which is a contradiction to the inequality (4.1)
and proof is completed. �

Example 2. The third order functional `-difference equation

∆`

(
n∆`

(
∆`

(
x(n) +

n− `
2n

x(n− `)
))3

)

+
27`7 (8n2 + 27n`+ 27`2) (n− `)3

n2 ((n+ `)(n+ 2`)(n+ 3`))3 x3(n− `) = 0,(4.3)

satisfies by hypothesis of Theorem 4.2 which implies that equation (4.3) has a

solution converging to 0. Clearly, {x(n)} =

{
`

n

}
is one such solution.

Corollary 4.1. Assume that conditions (3.1) and (3.9) hold, if Q > 1. Then
{x(n)} is either converging to 0 or oscillatory.
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Example 3. Here, we give an illustration with the equation given below.

∆`

(
∆`

(
∆`

(
x(n) +

1

3
x(n− `)

))3
)

+ q(n)f(x(g(n))) = 0, n > `.(4.4)

Here q(n) =
32`7 (16n4 + 40n3`+ 13n2`2 − 30n`3 + 9`4)

3n2 ((n+ `)(n+ 2`)(n+ 3`))3 , f(x) = x3 and g(n) =

n− `. Then by Corollary 4.1 we obtain lim
n→∞

x(n) = 0. Infact {x(n)} =

{
`

n

}
is one

such solution of equation (4.4) .

Theorem 4.3. Let (3.1) holds. If ∃ ρ(n) > 0 and

lim sup
n→∞

n−n0−j−`∑̀
0

(
ρ(n̄0 + s`)φ(n̄0 + s`)

− ββ

(β + 1)β+1

(
∆`ρ(n̄0 + s`)

ρ(n̄0 + s`)

)β+1

ψ(n̄0 + s`)

)
=∞.(4.5)

where ψ(n) = ρ1+β(n + `)ρ(n)(βRn0(g(n + `)))−β. Then either {x(n)} converging
to 0 or oscillatory.

Proof. Suppose x(n) is a bounded and non-oscillatory solution of (4.5) which
implies that x(n) > 0 and z(n) satisfies property (i) or property (ii) by Lemma
3.1. Suppose z(n) satisfies property (ii), then by Lemma 3.2, x(n) → 0 as n →
∞. If z(n) possess property (i), then by Lemma 3.3, we have the inequalities
(3.2) and (3.3) hold. Now, we define ω1(n) > 0 as

ω1(n) =
E2(n)

zβ(g(n))
ρ(n).

By applying ∆` and using (3.2) and (3.3), we will get the inequality

∆`ω1(n) ≤ −ρ(n)φ(n) +
∆`ρ(n)

ρ(n+ `)
ω1(n+ `)− ψ−

1
β (n)w

β+1
β

1 (n+ `).

Using inequality (3.16) with u = ω1(n + `), A =
∆`ρ(n)

ρ(n+ `)
and B = ψ−

1
β (n), we

obtain

∆`ρ(n)

ρ(n+ `)
ω1(n+ `)− ψ(n)−

1
βw

β+1
β

1 (n+ `) ≤ ββ

(β + 1)β+1

(
∆`ρ(n)

ρ(n+ `)

)β+1

ψ(n).
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Therefore, we get

∆`ω1(n) ≤ −ρ(n)φ(n) +

(
∆`ρ(n)

ρ(n+ `)

)β+1

ψ(n)
ββ

(β + 1)β+1
.

By adding the above from n0 to n− `,

ω1(n) ≤ ω1(n̄0)−

n−n0−j−`∑̀
s=0

(
ρ(n̄0 + s`)φ(n̄0 + s`)

− ββ

(β + 1)β+1

(
∆`ρ(n̄0 + s`)

ρ(n̄0 + s`+ `)

)β+1

ψ(n̄0 + s`)

)
.

Applying limit superior and using (4.5), leads ω1(n) → −∞, a contradiction to
the fact ω1(n) > 0, which gives the proof. �

Example 4. For illustration, consider the equation given below.

∆`

(
n∆`

(
1

n
∆`

(
x(n) +

1

2
x(n− 3`)

)5
))

+
4n2 + 10n`+ 5`2

(n+ `)(n+ 2`)
x5(n− 4`) = 0.(4.6)

From Theorem 4.3, we get oscillatory solution. Indeed {x(n)} =
{

(−1)[
n
` ]
}

is one
of the oscillatory solution of equation (4.6) .

5. CONCLUSION

Using a Riccati type transformation, we have established criteria for the more
general 3rd order generalized functional `-difference equation (1.1). We have
also set conditions for convergent solution converging to 0. Our results are
also the generalization of all the earlier results, especially those of [5]. The
technique adopted is also a different form that already existed. The significance
of the results is also well established by the examples presented in this paper.
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