
ADV MATH
SCI JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.7, 5065–5073
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.7.72 Spec. Iss. on AMABDA-2020

A STUDY, ANALYSIS AND DEEP DIVE ON DOCKER SECURITY
VULNERABILITIES AND THEIR PERFORMANCE ISSUE

AAKRITI SHARMA1 AND RASHID HUSSAIN

ABSTRACT. Virtualization consists of the implementation of resources via soft-
ware, although you can use additional resources at the firmware level or hard-
ware it is a technique that can be applied in various contexts. The implemen-
tation of containers by Docker simplifying them and getting an easy implemen-
tation has allowed its use to be extended widely. However, information and
awareness about a Correct and safe implementation of it has not gone hand in
hand. Through this work it has been detected that Docker requires multiple ap-
proaches regarding the security that apply to each phase of Docker implemen-
tation. However, such information is the most widely dispersed and scarce com-
pared to the amount of information that can currently be found about Docker.
On the other hand, by observing in detail the different stages that make up
the deploying an application with Docker safely, they have found enough dif-
ferences in usability and capacity in Free tools available. In the search and
creation stage of our image has been easy to find websites and applications that
analyze them and provide a report with vulnerabilities and recommendations.

1. INTRODUCTION

In general terms, virtualization consists of the implementation of resources
via software, although you can use additional resources at the firmware level
or hardware it is a technique that can be applied in various contexts. So by in

1corresponding author
2010 Mathematics Subject Classification. 91G20, 97I80.
Key words and phrases. component, formatting, style, styling, insert.

5065

5066 A. SHARMA AND R. HUSSAIN

the operating systems, for example, mechanisms have been used for decades we
have virtual memory management, which allows a process to use an address
space larger than that offered by the hardware where it runs. In the context
of this work, we will refer to virtualization of resources at a level of major ab-
straction: virtual machines (VMs) and containers. A review of hypervisors and
containers is presented in the following sections. Does These two technologies
have often been presented as competitors, if We attend to the number of publi-
cations dedicated to comparing their performance [1] however, in practice they
should be considered complementary, taking into account the widespread use of
deploying container platforms on Virtual machines.

1.1. Hypervisors. A hypervisor or VMM (Virtual Machine Monitor) is a com-
ponent implementing normally in software that allows to create and execute
machine instances virtual, through hardware virtualization, and possibly other
techniques additional, such as dynamic code translation. A virtual machine cre-
ated on a hypervisor you can run a complete operating system, include-do the
kernel, so it is possible to run virtual machines with different systems opera-
tional issues (for example, Windows and Linux) on the same hardware. Since
Goldberg [2], hypervisors have been classified into two types based on environ-
ment where they run:
Type I. It runs directly on the CPU of the host computer. It is also nominate
native hypervisors or bare-metal hypervisors. The hypervisor is a micron-Cleo is
responsible for core operations, such as planning tasks or processes in the CPU
(scheduling) , interrupt handling and management of memory, and delegates
the rest of the operations to the cores of the virtual machines.
Type II. They run on the operating system of the host computer. They usually
buy get two parts: one that runs as a module of the system core operating
host, and another that runs as user-level processes in the system host operating
theme. Task planning is executed at the core of the system. Host theme. In
the literature the terms bare metal hypervisor and hosted frequently appear
hypervisor as synonyms of type 1 and 2 hypervisors respectively.

1.2. Application containers. The pattern of habitual use of the container tech-
nologies to which we have referred to above in providing an execution environ-
ment similar to that obtained NE with a virtual machine. That is, use a container
as an alternative to the use of a VM executed on a hypervisor. In the case of

A STUDY, ANALYSIS ON DOCKER SECURITY VULNERABILITIES AND PERFORMANCE 5067

FIGURE 1. Docker VS Virtual Machine architectures

Linux, use case normal with LXC is to start the container running init or system,
and the pro-usual stops: bash, sshd, etc. The most recent trend is, however, to
use application containers. In this model, the recommended usage pattern is
oriented to micro services: each container executes a group of applications or
services determined in function of some policy (for example, segregating groups
based on type of application, or of their consumers), instead of an execution en-
vironment complete to simulate a VM. It is important to note that in Linux, the
main di-difference between an application container and a system container is
your usage pattern: the core provides the same mechanisms for its creation in
both cases.

The use of virtualization at the operating system level has come using for
years to create what could be understood as "machines virtual light "(for exam-
ple, Jails in FreeBSD, Zones in Solaris, and OpenVZ or LXC) platforms for the
execution of application containers (such as Docker or Rkt from CoreOS) form a
paradigm that introduces new innovations such as the use of structured images
in layers, and facilities for the distribution of images. In parallel, this new model
introduces new vulnerabilities, which must be offset by a set of mechanisms we
are not very homogeneous, and often poorly documented. The use of applica-
tion containers has experienced remarkable growth. in recent years, especially
when compared to the growth of virtualization platforms based on hypervisors
in the same period. This faith nome is due, among other causes, to the shorter
starting times, less memory usage, and higher density of instances per container
machine With respect to virtual machines.

5068 A. SHARMA AND R. HUSSAIN

1.3. System Containers. While the function of a hypervisor is, in some way,
to partition of a machine, container-based technology creates systems of an in-
stance of the operating system. Each partition maintains the appearance of
being an independent machine, although they all share the same core of the
OS[4,5]. This allows executing with a single instance of the system core. Oper-
ating theme multiple applications isolated from each other. The technique used
in the containers has its origin in the system call root (2), present in UNIX since
the seventies, and that allows a process change the root directory that was used
to boot the system to another direct-River. Jails [6], implemented in FreeBSD at
the end of the 1990s, employs a root-like technique to virtualize the file system
of a set of applications (that is, modify the namespace of the file system visible
from those applications), but adds similar measures to the spaces of names of
processes and network resources. In 2004, a similar functionality, called "zones"
[7] appeared on Solaris10. Solaris 10 zones improved partition isolation us-
ing are source aggregation scheme (resource pools), which allows allocate a
set of resources (for example, memory or CPUs) so that partition use it exclu-
sively. This prevents the workload of a partition monopolize the resources of
the machine. Although in Linux, the functionality to support containers has had
several implementations, the first project that obtained an appreciable diffusion
was OpenZV.

2. THE DOCKERS ECOSYSTEM

Following the popularity of Dockers, a considerable number of projects have
appeared related coughs, which introduce novelties in technology, or provide
alternative implementations similarly, many projects disappear with the same
speed as new ones appear. It is possible that the speed at which they produce
these new developments and the ever-changing landscape of the architectures of
existing products be responsible for the confusing vocabulary Used in these tech-
nologies, where in the absence of clear definitions, meta-foraâĂŹs as a life cycle
and ecosystem.A major issue of this ecosystem, which is mainly driven by open
source projects, is the lack of clear functional demarcation of different compo-
nents. In fact, capabilities and scopes of existing projects overlap. Similarly, we
found Terminology in literature to be inconsistent. âĂIJIn particular, the name
Docker has been used with different meanings. When it appeared in 2013, the

A STUDY, ANALYSIS ON DOCKER SECURITY VULNERABILITIES AND PERFORMANCE 5069

situation was well defined: it was a pro-Free software project implemented in
the Go language, and developed by a pro-PaaS seer called dot Cloud. Currently,
Docker is a company (Docker Inc., a registered trademark) that markets various
products, services, and promotions na several free software projects related to
container technology Dores In the rest of the work, we will use the term Docker
informally to re-We rely on a container management platform composed of three
components.

• Engine, daemon
• Docker client
• Docker registry

3. ALTERNATIVES TO DOCKER

Previously called Rocket is an alternate container platform-Docker, or more
specifically, a container runtime, developed by Core OS. Unlike Docker, Rkt
seems to follow the UNIX tradition of using tools. While you specialize in doing
a good thing and that can be combined to realizer more complex operations.
According to its creators, the tools for Upload images, install and run containers
must be well integrated, but be independent; image distribution must support
various protocol solos, and deployments in private environments should not re-
quire access to registry. Core OS provides, anyway, a registry for images of both
rkt as from Docker.

4. DOCKER SECURITY

Docker containers leverage the ability of the Linux kernel to create isolated
environments that share the kernel with the host host. One of the characteristics
of the kernel that is used are the "capabilities". I know divide the root capabilities
so that each process can be granted capabilities that really requires. There are
capacities for almost all the areas where root privileges are needed. This way
you get avoid overuse of root users and use a permissions policy minimum that
provides greater security to the system. If an intruder gets climbing to root
inside the container will be more complicated to perform actions harmful or get
scaled to the host. In most cases, Docker does not need root privileges and could
be reduce capacities by denying among others:

5070 A. SHARMA AND R. HUSSAIN

• "mount" operations
• Access to raw sockets (to prevent impersonation attacks)
• Access to file system operations such as creating new device nodes, mod-

ify the owner of the files or alter the attributes
• Module loading

By default, Docker uses a white list. Deny all capabilities except those specified
and supports the removal and insertion of new capabilities to list. It is important
to review the ones that are really required by our process to establish the most
secure configuration since the initially granted to containers create incomplete
insulation.

5. DOCKER IMAGES SECURITY

To create our image we will use a base image of the stored in the Docker
Hub. It is important not to trust any image found on the internet or in any
repository. Docker sponsors a team dedicated exclusively to review and publish
content in the official repositories. There are official repositories for more use
cases commons that provide clear documentation and promote good practices
so it is a good strategy to start from one of them. For the project, a base image
for Wildfly servers is sought with the Docker search command. Docker provides
the "Content trust" functionality, this option forces the image tags to be signed
and verified in the customer side It is disabled by default so we must run the
command:

<< export DOCKER_CONTENT_TRUST = 1 >>

We note that it is not signed so the option should be used Âń–Disable-content-
trustÂż. It is always better to have it enabled by default and use the deactivation
parameter if necessary for us to be aware that it is not signed and we should
check it better. In any case and more in cases where official images are not used
or not is signed, the images should be reviewed to avoid Introduction of harmful
software in our container.

6. COMPARATIVE ANALYSIS OF DOCKER SECURITY

Container clusters and orchestration The micro service-oriented container
use model often implies the need to maintain a considerable number of con-
tainer clusters. In Many cases, these clusters may be geographically dispersed,

A STUDY, ANALYSIS ON DOCKER SECURITY VULNERABILITIES AND PERFORMANCE 5071

and should meet minimum availability and fault tolerance requirements. The
complex-The maintenance of such an infrastructure has caused the appearance
of some software components that facilitate integration and container man-
agement. In general, the component that provides several or all functionali-
ties needs SaraiâĂŹs are known as container orchestrators .The terminology, as
usual in this field, is elastic enough so that you can’t find two equivalent defini-
tions of orches Tador; we will use as a basis the list of functionalities, because
it excludes the possibility of leaving something out Thus, in a broad sense, the
orchestrator is responsible for:

(1) Cluster status management and planning. It is required to maintain a
life global status of the cluster state to be able to plan workloads de-
pending on the free resources of the cluster and the schedule. This, the
planfication of work queues of a conventional environment, but taking
into the complexity of the container cluster counts.

(2) Provide high availability and fault tolerance: mechanisms for biliary
fault detection and avoid single points of failures, balancing ofload.

(3) Security Integration of utilities to verify the integrity of the imagines,
identity management and access management services, etc.

(4) Simplify network management: dynamic address and port management,
communication between containers located in different machines through
tunnels.

(5) Enable service discovery. In the model traditional services are associ-
ated in a relatively static way to direct ports and ports that are resolved
by some combination of DNS, LDAP and HTTP URIs. The container
model, the association between Service names and addresses cannot be
persistent, among other things. Tries for the possibility of auto scaling
(creation of dynamics of new instance.

(6) Make continuous deployment possible. When the CI / CD model is used,
the Orchestration platform can provide mechanisms to integrate the Tool
management like Jenkins.

(7) Monitoring of both the infrastructure where the containers are executed
Dores like their activity.

5072 A. SHARMA AND R. HUSSAIN

(8) Docker’s native container orchestration platform is Docker Swarm. The
one that is receiving the most attention, however, is Kubernetes , who
developed initially Google, and is currently a free software project.

(9) As a sequence of success of Kubernetes, Docker Inc. offers it as an alter-
native to Docker Swarm in many of its products, although not in the CE
version for Linux.

CONCLUSION

After scratching the surface of the techniques used in the containers a little
we have been able to verify that some of the ideas that we had at the beginning
of the work were not entirely correct, or were directly so wrong. The idea
of comparing a Linux container with a VM, in depending on its performance,
density per host, and in particular in matters of security, as reproduced in so
many publications does not seem so right. At the end of the work, our opinion is
that VMs and containers of applications are different species, and therefore any
comparison has little meaning: the containers are more or less confined process
groups, and the safety comparison should be made with respect to processes
that do not run in a container. From this point of view, the containers in Linux
they bring substantial improvements in the security plane.

REFERENCES

[1] C. BOETTIGER: An introduction to Docker for reproducible research, ACM SIGOPS Operat-
ing Systems Review, 49(1) (2015), 71-79.

[2] W. FELTER, A. FERREIRA, R. RAJAMONY, J. RUBIO: An updated performance compar-
ison of virtual machines and linux containers, IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), Philadelphia, PA, 2015, 171-172. doi:
10.1109/ISPASS.2015.7095802

[3] A.S. HARJI, P.A. BUHR, T. BRECHT: Our troubles with Linux Kernel upgrades and why
you should care, ACM SIGOPS Operating Systems Review, 47(2) (2013), 66-72.

[4] M.J. SCHEEPERS: Virtualization and containerization of application infrastructure: A com-
parison, 21st Twente Student Conference on IT June 23rd, 2014, Enschede, The Nether-
land.

[5] K.-T. SEO, H.-S. HWANG, I.-Y. MOON, O.-Y. KWON, B.-J. KIM: Performance Com-
parison Analysis of Linux Container and Virtual Machine for Building Cloud, Proccedings on
Networking and Communication, 2014.

A STUDY, ANALYSIS ON DOCKER SECURITY VULNERABILITIES AND PERFORMANCE 5073

[6] W. VAN DER AALST, T. WEIJTERS, L. MARUSTER: Workflow mining: Discovering process
models from event logs, IEEE Transactions on Knowledge and Data Engineering, 16(9)
(2004), 1128-1142.

[7] B. VARGHESE, L.T. SUBBA, L. THAI, A. BARKER: Container-Based Cloud Virtual Ma-
chine Benchmarking, IEEE International Conference on Cloud Engineering (IC2E), Berlin,
2016, 192-201. doi: 10.1109/IC2E.2016.28

[8] S. PRABU, V. BALAMURUGAN, K. VENGATESAN: Design of cognitive image filters for
suppression of noise level in medical images, Measurement, bf141 (2019), 296-301.

[9] S. KESAVAN, E. SARAVANA KUMAR, A. KUMAR, K. VENGATESAN: An investi-
gation on adaptive HTTP media streaming Quality-of-Experience (QoE) and agility us-
ing cloud media services, International Journal of Computers and Applications, 2019.
https://doi.org/10.1080/1206212X.2019.1575034

[10] S. BELLON, R. KOSCHKE, G. ANTONIOL, J. KRINKE, E. MERLO: Comparison and eval-
uation of clone detection tools, IEEE Transactions on Software Engineering, 33(9) (2007),
577–591.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINNERING,
SURESH GYAN VIHAR UNIVERSITY,
JAIPUR, INDIA.
E-mail address: aakritivashishtha@gmail.com

PROFESSOR,
DEPARTMENT OF COMPUTER SCIENCE AND ENGINNERING,
SURESH GYAN VIHAR UNIVERSITY,
JAIPUR, INDIA.
E-mail address: rashid.hussain@mygyanvihar.com

