

Advances in Mathematics: Scientific Journal 9 (2020), no.7, 4383-4388

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.7.8

A NOTE ON *-REVERSE DERIVATIONS IN RINGS

BHARAT BHUSHAN, GURNINDER S. SANDHU 1 , AND DEEPAK KUMAR

ABSTRACT. Let R be a ring with involution * and $\delta: R \to R$ be a *-reverse derivation of R. In this note, our intent is to show that a well-known theorem of Bell and Kappe [2, Theorem 3] on derivations, also holds true for *-reverse derivations. More specifically, we characterize *-reverse derivations of prime and semiprime rings that act as homomorphism or anti-homomorphism on suitable subsets.

1. Introduction

Let R be an associative ring throughout. A ring R is prime (resp. semiprime) if for any $a,b \in R$, aRb = (0) (resp. aRa = (0)) implies a = 0 or b = 0 (resp. a = 0). An additive mapping $d: R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) for all $x,y \in R$. In particular, an additive mapping $d: R \to R$ satisfying $d(x^2) = d(x)x + xd(x)$ for all $x \in R$ is said to be a Jordan derivation. An additive mapping $F: R \to R$ is called generalized derivation if there exists an associated derivation d such that F(xy) = F(x)y + xd(y) for all $x,y \in R$. Clearly, every derivation is a generalized derivation. Herstein [3] introduced the notion of reverse derivation while studying Jordan derivations in prime rings, viz., an additive mapping $\delta: R \to R$ is said to be reverse derivation if $\delta(xy) = \delta(y)x + y\delta(x)$ for all $x,y \in R$. Notice that, every reverse derivation is a Jordan derivation, but the converse is not true in general. In 2015, Aboubakr and González [1]

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 16N60, 16W10.

Key words and phrases. Prime ring, Semiprime ring, Involution, *-reverse derivation.

extended the notion of reverse derivation to generalized reverse derivation as follows: an additive mapping $F:R\to R$ is called generalized reverse derivation if $F(xy)=F(y)x+y\delta(x)$ for all $x,y\in R$, where δ is a reverse derivation of R. By an involution of R, we mean an additive mapping $*:R\to R$ satisfying: (i) $(xy)^*=y^*x^*$, (ii) $(x^*)^*=x$ for all $x,y\in R$. As usual, [x,y] denotes the commutator xy-yx and the basic commutator identities are [xy,z]=[x,z]y+x[y,z] and [x,yz]=[x,y]z+y[x,z].

Very recently, Sandhu et al. [5] introduced the notion of *-reverse derivation as follows:

Definition 1.1. Let R be a ring with involution *. By a *-reverse derivation of a R, we mean an additive mapping $\delta: R \to R$ such that $\delta(xy) = \delta(y)x^* + y^*\delta(x)$ for all $x,y \in R$. If $a \in R$ be a fixed element, then a mapping $x \mapsto [x^*,a]$ is a natural example of *-reverse derivation, we call it the inner *-reverse derivation.

Example 1. Let
$$R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a,b,c,d \in \mathbb{Z} \right\}$$
, where \mathbb{Z} is the ring of integers. Define mappings $\delta,*:R \to R$ such that $\delta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -b & 2b \\ a-2c-d & b \end{pmatrix}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Clearly, $*$ is an involution on R and δ is a $*$ -reverse derivation, which is neither a derivation nor a reverse derivation.

2. *-REVERSE DERIVATIONS AS (ANTI)HOMOMORPHISMS

In a classical paper, Bell and Kappe [2] initiated the study of derivations of prime rings that act as homomorphism or anti-homomorphism on a specific subset of the ring. Precisely, they proved the following result: Let R be a prime ring and U a nonzero right ideal of R. If d is a derivation of R which acts as a homomorphism or an anti-homomorphism on U, then d=0 on R. We now show that this result is also valid in *-reverse derivation case.

Theorem 2.1. Let R be a prime ring with involution and λ a nonzero right ideal of R. If R admits a *-reverse derivation δ that acts as an anti-homomorphism or a homomorphism on λ , then $\delta = 0$.

Proof.

(a) Let us assume that $\delta(xy) = \delta(y)\delta(x)$ for all $x, y \in \lambda$. In particular, we have $\delta(x^2y) = \delta(x(xy)) = \delta(y)\delta(x^2)$ for all $x, y \in \lambda$. It implies that

$$\delta(xy)x^* + y^*x^*\delta(x) = \delta(y)\delta(x)x^* + \delta(y)x^*\delta(x), \ \forall x, y \in \lambda.$$

In view of our hypothesis, it follows that

$$(2.1) (y^* - \delta(y))x^*\delta(x) = 0, \ \forall x, y \in \lambda.$$

Replace y by yr in (2.1), where $r \in R$, we obtain

$$r^*(y^* - \delta(y))x^*\delta(x) - \delta(r)y^*x^*\delta(x) = 0.$$

Using (2.1), we get $\delta(r)y^*x^*\delta(x)=0$ for all $x,y\in\lambda$ and $r\in R$. It implies that $\delta(r)Ry^*x^*\delta(x)=(0)$ for all $x,y\in\lambda$ and $r\in R$. Thus, we conclude that either $\delta=0$ or $y^*x^*\delta(x)=0$ for all $x,y\in\lambda$. Let us consider the latter case that $y^*x^*\delta(x)=0$ for all $x,y\in\lambda$. Now it follows from (2.1) that

(2.2)
$$\delta(y)x^*\delta(x) = 0, \ \forall x, y \in \lambda.$$

Let us take xy in place of y in the initial relation, we get $\delta(x(xy)) = \delta(xy)\delta(x)$ for all $x, y \in \lambda$. It implies that

$$\delta(x^2y) = \delta(xy)\delta(x)$$

$$\delta(y)(x^2)^* + y^*\delta(x^2) = \delta(y)x^*\delta(x) + y^*(\delta(x))^2.$$

Using (2.2) and the fact that $\delta(x^2)=(\delta(x))^2$ for all $x\in\lambda$, we left with $\delta(y)(x^*)^2=0$ for all $x,y\in\lambda$. Substitute yr instead of y in the last relation, where $r\in R$, we find that $\delta(r)y^*(x^*)^2=0$. It implies that $\delta(r)R(x^2y)^*=(0)$ for all $x,y\in\lambda$ and $r\in R$. In view of our assumption, we find that $y^*(x^2)^*=0$ for all $x,y\in\lambda$. That means, we have $(x^2y)^*=0$ for all $x,y\in\lambda$. Applying involution, we get $x^2y=0$ for all $x,y\in\lambda$. In particular, it gives that $x^3=0$ for all $x\in\lambda$. In view of Levitzki's result [4, Lemma 1.1], a contradiction follows. It completes our proof.

(b) Suppose that $\delta(xy) = \delta(x)\delta(y)$ for all $x, y \in \lambda$. Replace y by xy, we get

(2.3)
$$y^*x^*\delta(x) = \delta(x)y^*\delta(x), \ \forall x, y \in \lambda.$$

Replace y by yr in (2.3), where $r \in R$, we find that

(2.4)
$$r^* y^* x^* \delta(x) = \delta(x) r^* y^* \delta(x).$$

Left multiplying (2.3) by r^* and compare with (2.4) in order to get $y^*\delta(x)=0$ for all $x,y\in\lambda$ and $r\in R$. It implies that $[\delta(x),R]Ry^*\delta(x)=(0)$ for all $x,y\in\lambda$. Since R is a prime ring, for each $x\in\lambda$, either $[\delta(x),R]=(0)$ or $\lambda^*\delta(x)=(0)$. By Brauer's trick, we find that either $[\delta(x),R]=(0)$ for all $x\in\lambda$ or $\lambda^*\delta(x)=(0)$ for all $x\in\lambda$. Let us consider that latter case $y^*\delta(x)=0$ for all $x,y\in\lambda$. Thus, we see that $\delta(xy)=\delta(y)x^*$ for all $x,y\in\lambda$. By our initial hypothesis, we conclude that $\delta(x)\delta(y)=\delta(y)x^*$ for all $x,y\in\lambda$. Replace x by xr, where $r\in R$, we get $\delta(y)r^*x^*=r^*\delta(x)\delta(y)$. It further implies that $[\delta(\lambda),R]R\lambda^*=(0)$. Since $(0)\neq\lambda^*$, we get $\delta(\lambda)\subseteq Z(R)$. Hence, in each case we have $\delta(x)\in Z(R)$ for all $x\in\lambda$. Therefore, $\delta(xy)=\delta(y)\delta(x)$ for all $x,y\in\lambda$ and the conclusion follows from part (a).

Theorem 2.2. Let R be a semiprime ring with involution and λ a nonzero ideal of R. If R admits a *-reverse derivation δ that acts as an anti-homomorphism or a homomorphism on λ , then $\delta|_{\lambda} = 0$.

Proof.

(a) Let us assume that $\delta(xy) = \delta(y)\delta(x)$ for all $x, y \in \lambda$. Equivalently, we have

$$\delta(y)x^* + y^*\delta(x) = \delta(y)\delta(x)$$

$$\delta(y)(x^* - \delta(x)) = -y^*\delta(x).$$

Replace y by yz in (2.5), we find that $\delta(z)y^*(x^*-\delta(x))=0$ for all $x,y,z\in\lambda$. Replace x by rx, we get $\delta(z)y^*x^*\delta(r)=0$ for all $x,y,z\in\lambda$ and $r\in R$. In particular, we see that $y^*x^*\delta(z)Ry^*x^*\delta(z)=(0)$ for all $x,y,z\in\lambda$. It implies that $y^*x^*\delta(z)=0$ for all $x,y,z\in\lambda$. In this view, it follows that $x^*\delta(z)=0$ for all $y,z\in\lambda$. Replace x by x, where $x\in R$, we find that $x^*R\delta(z)=(0)$ for all $x,z\in\lambda$. Thus, we conclude that $x^*\delta(z)=0=\delta(z)x^*$ for all $x,z\in\lambda$. Finally, we see that $\delta(xy)=0$ for all $x,y\in\lambda$. Substituting y in place of y in the last relation, we get $\delta(s)(xy)^*=0$. It implies that $\delta(s)y^*\delta(s)x^*=0$ for all $x,y\in\lambda$ and $x\in R$. Thus, we conclude that $(\delta(R)\lambda^*)^2=(0)$ and hence $\delta(R)\lambda^*=(0)$. Likewise, we find $\lambda^*\delta(R)=(0)$. Now, we observe that for any $x,y\in\lambda$ and $x\in R$, we have

$$\delta((rx)y) = \delta(y)(rx)^* + y^*\delta(rx)$$
$$= 0.$$

It implies that $\delta(y)\delta(rx)=0$ for all $x,y\in\lambda$ and $r\in R$. Replace y by sy, we see that $\delta(y)s^*\delta(rx)=0$ for all $x,y\in\lambda$ and $r,s\in R$. Take rx in place of y, we conclude that $(R\delta(rx))^2=(0)$ for all $x\in\lambda$ and $r\in R$. But R has no nonzero nilpotent ideal, hence obtain $\delta(rx)=0$ for all $x\in\lambda$ and $r\in R$. In the same way, we find that $\delta(xr)=0$ for all $x\in\lambda$ and $r\in R$. Hence δ vanishes on all sums of the terms rx and xr, with $x\in\lambda$ and $r\in R$. It forces that $\delta=0$ on λ .

(b) Consider $\delta(xy) = \delta(x)\delta(y)$ for all $x, y \in \lambda$. That means

(2.6)
$$\delta(y)x^* + y^*\delta(x) = \delta(x)\delta(y), \ \forall x, y \in \lambda.$$

Replace x by zx in (2.6) in order to get

$$\delta(y)x^*z^* + y^*\delta(x)z^* + y^*x^*\delta(z) = \delta(x)z^*\delta(y) + x^*\delta(z)\delta(y)$$

$$\delta(x)\delta(y)z^* + y^*x^*\delta(z) = \delta(x)z^*\delta(y) + x^*\delta(zy)$$

$$\delta(x)[\delta(y), z^*] = x^*\delta(zy) - y^*x^*\delta(z).$$
(2.7)

Replace x by xy in (2.7), we get

$$\delta(y)x^*[\delta(y),z^*]=0, \ \forall x,y,z\in\lambda.$$

Then it is easy to see that $[\delta(y), z^*]\lambda^*[\delta(y), z^*] = (0)$ for all $x, y, z \in \lambda$. It implies $[\delta(y), z^*] = 0$ for all $y, z \in \lambda$. Replace z by zr, where $r \in R$, we obtain $[\delta(y), r^*]z^* = 0$. Therefore, we have

$$[\delta(\lambda), R]R\lambda^* = (0).$$

Let $\mathfrak{P} = \{P_{\alpha} : \alpha \in \Lambda\}$ be a family of prime ideals in R such that $\cap P_{\alpha} = (0)$. From our last expression, we find that for each α , either $\lambda^* \subseteq P_{\alpha}$ or $[\delta(\lambda), R] \subseteq P_{\alpha}$. Since $\cap P_{\alpha} = (0)$ and $\lambda^* \neq (0)$, we have $[\delta(\lambda), R] \subseteq P_{\alpha}$ for each α . Hence $\delta(\lambda) \subseteq Z(R)$. Further, the conclusion follows from part (a). We are done. \square

In this view one can easily deduce the following generalization of Theorem 2 of [2].

Remark 2.1. Let R be a semiprime ring and λ a nonzero ideal of R. If R admits a derivation δ that acts as a homomorphism or an anti-homomorphism on λ , then $\delta|_{\lambda} = 0$.

ACKNOWLEDGMENT

This research for the first author is supported by University Grants Commission, New Delhi (JRF, Grant no. 402996).

REFERENCES

- [1] A. ABOUBAKR, S. GONZÁLEZ: Generalized reverse derivations on semiprime rings, Siberian Math. J., **56**(2) (2015), 199–205.
- [2] H. E. Bell, L. C. Kappe: Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hung., **53**(3-4) (1989), 339–346.
- [3] I. N. HERSTEIN: *Jordan derivations of prime rings*, Proc. Amer. Math. Soc., **8** (1957), 1104–1110.
- [4] I. N. HERSTEIN: Topics in ring theory, Univ. of Chicago, Math. Lec. Notes, 1965.
- [5] G. S. SANDHU, B. L. M. FERREIRA, D. KUMAR: On *-reverse derivable maps, arXiv:2002.03101v1 [math.RA] 8 Feb 2020.

DEPARTMENT OF MATHEMATICS
PUNJABI UNIVERSITY
PATIALA, INDIA

E-mail address: bharat_rs18@pbi.ac.in

DEPARTMENT OF MATHEMATICS
PATEL MEMORIAL NATIONAL COLLEGE
RAJPURA, INDIA
E-mail address: gurninder_rs@pbi.ac.in

DEPARTMENT OF MATHEMATICS PUNJABI UNIVERSITY PATIALA, INDIA

 $\textit{E-mail address} \colon \texttt{deep_math1@yahoo.com}$