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ANALYSIS AND EXTRACTION OF COMMUTING PATTERNS IN RAILWAY
NETWORKS USING VARIOUS MATRIX DECOMPOSITION TECHNIQUES

NALLI VINAYA KUMARI' AND ANIL KUMAR

ABSTRACT. In this paper, we will review how to extract commuters’ patterns
using the matrix decomposition method. Matrix decomposition is a vast data
processing technique, where we will use multiple inputs as matrix data to find a
relative pattern. This pattern often helps us to determine how often commuters
travel between places and also we can find human traffic during a particular
time like business hours. These findings will help us figure out solutions for
managing crowds to ensure access to the passenger. We can use this kind of data
mined pattern extraction to help travelers to maintain social distancing. Using
this method, we can achieve social distancing, Safety, Traveler convenience,
etc. Also, this pattern will help us to segregate people based on their preferred
modes (i.e.)using counters for getting tickets, online booking, unplanned trav-
elers, planned travel, Cash payment users, and Digital money users. Separating
the groups into different kinds will help each one to use their preferred modes
with hassle-free. In this paper, we are going to review various methodologies to
achieve the above result. Different methods will produce independent results
with slight relations with each other. Using all of the results, we will decide
which method produces accurate output.

1. INTRODUCTION

A matrix decomposition is a method of diminishing a framework into its con-
stituent parts. It is a methodology that can disentangle progressively complex
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framework tasks that can be performed on the decayed grid instead of on the
first network. A typical similarity for network decay is the figuring of numbers,
for example, calculating 10 into 2 x 5. Hence, framework decomposition is ad-
ditionally called grid factorization. Like calculating genuine qualities, there are
numerous approaches to deteriorate a grid, and henceforth there is a scope of
various lattice decay methods. As defined is abstract, we will use the follow-
ing methodology to find the matching results to extract the patterns in railway
networks.

¢ Joint and Individual variation Explained (JIVE).
e Lu Decomposition.

e Cholesky Decomposition.

e Singular Value Decomposition.

We will discuss the above techniques in the next session briefly. Each method
has its methodology to drive the results. As per the review, JIVE produces the
most accurate results compared to other methods.

Lu Decomposition. This process of framing two triangles has different appli-
cations, such as the arrangement of a set of terms, which in itself is a critical
component of many applications. And for example, The discovery of current at
the circuit and the organization of discrete dynamic problems.

Cholesky decomposition. Cholesky decomposition and other decomposition
strategies are significant, as it is a rare occurrence achievable to explicitly per-
form framework calculations. Cholesky decomposition, otherwise called Cholesky
factorization, is a strategy for breaking down a positive-clear grid.

JIVE. Joint and Individual Variation Explained (JIVE), a general variety decom-
position for a structured analysis of these datasets, has been clarified. JIVE is the
easiest way to test the result. This exploratory approach breaks down a dataset
into three terms: a low-position estimate that calculates the collection structure
between information types. These low-position approximations capture each
data type’s particular structure and recurrent concussions. Examining the indi-
vidual structure offers an approach for separating conceivably useful data, but
no other details. Representing a unique structure likewise takes into consider-
ation progressively exact estimation of what is essential between information

types.
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SVD. The Singular Value Decomposition (SVD) is a ground-breaking compu-
tational device. Current calculations for getting such decay of general frame-
works have profoundly affected various applications in science and building
disciplines. The SVD is usually utilized to arrange unconstrained direct least
squares issues, lattice rank estimation, and accepted relationship investigation.
In computational science, it is usually applied in areas such as data recovery,
seismic reflection tomography, and constant sign handling.

1.1. LU Decomposition. A=LU where A is 2 x 2 square matrix

11 Q12 lin O U1 U2
A= = = LU,
Q21 A22 lor oo 0
where A is 2 x 2 square matrix
11 a2 Qi3 lin O 0 Uy; Uiz U3
A= Q21 Q22 (23 = lor Iy O 0 uge U = LU,
asy asy ass3 31 l32 33 0 0 ‘uss

when A is 3 x 3 square matrix.

LU network decomposition refers to the factorization of two triangular laths,
one large triangle structure, and one lower triangular grid with the purpose of
offering shown in figure 1. The first grid as a result of these two grids. For
instance, the arrangement of a conditional arrangement, which itself forms the
fundamental element of various applications, discover current in a circuit and
organize discrete, dynamic frames; locate backward of a network and find the
decisive factor of a matrix. This technology to build a structure by two trian-
gular grids has specific applications, for example, In essence, the LU strategy
for decomposition is convenient to display the problem that can be illuminated
in the grid structure at any point. Moving to the grid layout and dealing with
triangular grids makes counting simple throughout the time the system is spent.

A square grid A may be disintegration into two square networks L and U to
the degree that A = L U, with U being formed by the Gauss disposal method
on An, is the upper triangular grid and L being a lower triangular frame with
inclination sections equal to 1. Now, LU decomposition is practically Gaussian,
but we only deal with the grid a (rather than an expanded matrix). We will
manage a 3x3 arrangement of conditions for succinctness, yet everything here
sums up to the nxn case. Note that the numpy decomposition utilizes halfway
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FIGURE 1. LU Decomposition Result

turning (grid columns are permuted to utilize the biggest rotate). This is on the
grounds that little can prompt numerical flimsiness. Another motivation behind
why one should utilize library capacities at whatever point conceivable.

1.2. Cholesky Decomposition.
XTAx = Xni = 1Xnj = 1A;;x0; = Xni = 14,2020 4+ 2X4 > jA;jxixg

Every positive definite matrix A € C'n x n can be factored as A = R HR where
R is upper triangular with positive real diagonal elements.

Suppose A is n x n and Hermitian defined as: (A;; = Aji)rHAz = Xni =
1Xnj = 1A,zizj = Xni = 1Aii|zi|]2 + Xi > j(AiTiz] + Ajjxizj) = Xni =
1Adi|xi|2 + 2Re X1 > jA;;Tizy.

Note that x H Ax is real for all x € C niATstrategy for breaking down a positive-
unmistakable lattice. A positive-distinct network is characterized as an asym-
metric grid for every single imaginable vector x, XAx>0. Cholesky decomposi-
tion and other decomposition strategies are significant, as it is a rare occurrence
achievable to perform framework calculations explicitly. Cholesky decomposi-
tion, otherwise called Cholesky factorization, is a strategy for breaking down a
positive-clear grid. A positive-distinct lattice is characterized as an asymmetric
framework where for every conceivable vector x, XAx>0. Cholesky decomposi-
tion and other decomposition strategies are significant, as it is a rare occurrence
doable to perform lattice calculations expressly. A few utilizations of Cholesky
decomposition incorporate unraveling frameworks of direct conditions, Monte
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Carlo recreation, and Kalman filters. Cholesky decomposition factors a positive-
unequivocal grid An into A=LLT Where L is a lower triangular lattice. L is known
as the Cholesky factor of An and can be deciphered as the square foundation of
a positive-clear matrix shown in figure 2.
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FIGURE 2. Cholesky Decomposition Result

1.3. Singular Value Decomposition. To get the singular worth decomposition,
shown in figure 3 .we can exploit the way that for any network An, ATA is
symmetric (since (ATA)T=AT(AT)T=ATA). Symmetric lattices have the pleasant
property that their eigenvectors structure an orthonormal premise; this isn’t
appallingly difficult to demonstrate, yet for curtness, trust me. (To demonstrate
some portion of this hypothesis, start with two eigenvectors vl and v2, compose
their spot item as a framework increase, and basically tinker with the variable
based math and their eigenvalues A1 and A2 until you can show that the speck
item should be zero on the grounds that the eigenvalues are unmistakable.)
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Another significant lattice decomposition is particular worth decomposition or
SVD. For any mxn grid A, we may compose:

A=UDV,

where U is a unitary m of the network (symmetric in the actual case), D is a
rectangular m of inclination to corner parts d1.,dm. V is a (symmetric) n unitary
grid. SVD is used in the basic analysis of the Moore-Penrose component and in
the measurement of the pseudo-conversion.

Choleskey decomposition using np array:

A = np.array([[8,6,4,11,[1,4,5,11,[8,4,1,11,[1,4,3,611)

b = np.array([19,11,14,14])

la.solve(A,b)
Output: array([ 1., 1., 1., 1.1)
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FIGURE 3. Singular Value Decomposition

1.4. Joint and Individual variation Explained(JIVE). Plays JIVE decomposi-
tion in a round-up of information gatherings, when a measurement is shared
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by information, which returns the weaker networks which capture the joint and
individual data structure. This makes two rank options when the rank is dark, a
stage check, and a BIC calculation.
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FIGURE 4. JIVE Result

Similarly, three plotting capabilities for the disparity assigned to each datum
source are remembered for the bundle: a bar-plot showing secondary fluctu-
ation levels from the joint structure and the individual structure, a heatmap
showing uncertainty structures, and head part tracks. Joint and Individual Vari-
ance (JIVE), a general variety decomposition used for the structured study of
data sets. The decline consists of three terms: a low position expectation of
a mixture of different knowledge types, a low position estimate for individual
structured variations, and a leftover clamor. JIVE analyses the combined variety
of information types, decreases the dimension of data and introduces new head-
ings for a joint and structure visual study shown in figure 4 . The methodology
revised speaks of an improvement in the critical component research and has
strong points of concern about popular two-square strategies such as canonical
and partial lower squares.

CONCLUSION

Based on our review of the decomposition of Lu, Cholesky decomposition,
and shared variable values. To replicate the outcome, we suggest using the JIVE
technique. Thanks to the versatility, precision, and very less noise in JIVE ’s
performance. The other approaches have a bit of noise in their output, and the
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result is very different. JIVE does not allow information to be obtained, as in
realistic analysis of knowledge. For example, smoothing regulatory strategies
can enhance practical knowledge techniques. JIVE gages for joint and indi-
vidual systems are not excluded from exceptions as an Associate Editor points
out. Exploratory techniques, such as PCA, are fairly stable and important vari-
ants of PCA have been established late. An interesting possible expansion is a
strong type of JIVE. In addition, all missing qualities should be applied to the
JIVE gauges above. Another possible extension is a approach that specifically
demonstrates missing attributes in determining the joint and individual struc-
ture.

This examination was provoked by the longing to support local and trans-
portation organizers better comprehend the job that worker railway network
plays in coordinating intra-provincial turn of events. We explore the perplexing
impact of establishing a suburbanite rail framework on encompassing neighbor-
hood travel conduct and the assembled condition. With proceeded with spread
and vehicle prompted social and ecological issues, it is a higher priority than any
time in recent memory for organizers to comprehend this relationship. Hence
we suggest the JIVE method to analyses the findings in the commuter’s rail-
way pattern. With the help, JIVE methodology, we can overcome problems that
occurs in the commuter pattern in the railway network.

For details see [1-10].

FUTURE WORK

The review shows that the proposed AJIVE overtook different models of ma-
trix decomposition. In our study, we saw that AJIVE functioned well in conver-
gence rate, dependability measures, and order precision. This strategy can be
actualized as a community-oriented sifting method of data recovery. In the fu-
ture, a versatile learning rate based strategy can be utilized with AJIVE to show
signs of improvement results and convergence.
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