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ULAM STABILITY OF NTH ORDER DIFFERENCE EQUATION

R. MURALI1 AND D.I. ASUNTHA RANI

ABSTRACT. In this article, we enumerate the Hyers-Ulam stability of the nth
order difference equation yt+n = g (t, yt, . . . , yt+n−1) by using contraction map-
ping principle.

1. INTRODUCTION

The Ulam stability problem for various functional equations is invented by a
famous talk of S.M. Ulam [19] in 1940. The first positive answer was given by
D.H. Hyers [7] in 1941. Since then, many number of researchers have analyzed
the Ulam stability problem for various functional equations in different spaces
(see [2,4,6,14]).

After that a generalization Ulam’s problem was proposed by changing func-
tional equations with differential and difference equations. The Hyers-Ulam
stability of differential equations have been established in many papers (see
[1, 8, 11, 17]) and the references cited therein. Now a days, only rare results
are described in the literature regarding the Hyers-Ulam stability of difference
equations (see [3,5,10,12,13,15,16,18]).

In 2006, S.M. Jung et al. [9] investigate the Hyers-Ulam stability of the first
order difference equation. Motivated and connected by the above result, here
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our foremost aim is to establish the Hyers-Ulam stability of the nth order differ-
ence equation

(1.1) yt+n = g (t, yt, . . . , yt+n−1)

for all t ∈ N0, by using Banach’s contraction mapping theorem.

2. PRELIMINARIES

The following definition is very useful to prove our main results.

Definition 2.1. Let the nth order difference equation (1.1) has the Hyers-Ulam
stability if there exists a positive constant L < 1 with the following properties: for
every ε > 0 and for any ρ : [0,∞) → [0,∞) be a monotone increasing function,
there exists a ψ : [0,∞)→ [0,∞) such that

|pt+n − g(t, pt, . . . , pt+n−1)| ≤ ε

for any complex-valued sequence {pt}t∈N0
. Then there exists a complex-valued se-

quence {qt}t∈N0
satisfies the difference equation

qt+n = g (t, qt, . . . , qt+n−1)

and |qt+n−1 − pt+n−1| ≤ ψt+n−1 (|q0 − p0|) such that |qt+n − pt+n| ≤ L(ε). We call
such L as the Hyers-Ulam stability constant for the difference equation (1.1).

3. HYERS-ULAM STABILITY

In this section, we establish the Hyers-Ulam stability of the nth order differ-
ence equation (1.1). First, we prove the theorem which will be very useful and
powerful tool for proving our main results.

Theorem 3.1. Given ε > 0, let g : N0 × Cn → Cn be a function such that

(3.1) |g(t, v)− g(t, w)| ≤ ρ (|v − w|)

where v = v (pt, . . . , pt+n−1) and w = w (qt, . . . , qt+n−1) for all t ∈ N0 and all
v, w ∈ Cn, where ρ : [0,∞) → [0,∞) is a monotone increasing function. If a
sequence {pt}t∈N0

which satisfies the inequality

(3.2) |pt+n − g (t, pt, . . . , pt+n−1)| ≤ ε
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for all t ∈ N0. Then there exists a sequence {qt}t∈N0
satisfies the difference equation

(3.3) qt+n = g (t, qt, . . . , qt+n−1)

such that

(3.4) |qt+n−1 − pt+n−1| ≤ ψt+n−1 (|q0 − p0|)

for all t ∈ N0, where the function ψ : [0,∞)→ [0,∞) is denoted by ψ(y) = ρ(y)+ε,
for all y ≥ 0 and ψt+n−1 denotes the value of t+ n− 1th iteration of ψ at y.

Proof. By using the principle of recursive definition, there exists a complex-
valued sequence {qt}t∈N0

is uniquely determined by (3.3) provided that q0 is
given.

Now to prove the inequality (3.4), we have to apply an induction method on
t. Using (3.1), (3.2) and (3.3) for t = 0, we have

|qn − pn| ≤ |g (0, q0, . . . , qn−1)− pn|

≤ |g (0, q0, . . . , qn−1)− g (0, p0, . . . , pn−1)|

+ |g (0, p0, . . . , pn−1)− pn|

≤ ρ (|qn−1 − pn−1|) + ε

|qn − pn| = ψn (|q0 − p0|) .

Hence by using induction hypothesis, we can assume that the inequality (3.4) is
true by putting t = 1 in (3.4). Now, we have to prove the inequality (3.4) is true
for some t+ n ∈ N. Then, by using (3.1), (3.2) and (3.3), we obtain

|qt+n − pt+n| ≤ |g (t, qt, . . . , qt+n−1)− pt+n|

≤ |g (t, qt, . . . , qt+n−1)− g (t, pt, . . . , pt+n−1)|

+ |g (t, pt, . . . , pt+n−1)− pt+n|

≤ ρ (|qt+n−1 − pt+n−1|) + ε

≤ ψ
(
ψt+n−1 (|q0 − p0|)

)
= ψt+n (|q0 − p0|)

This proves the inequality (3.4) for all t ∈ N0. �

Now, we have to prove the Hyers-Ulam stability of the nth order difference
equation (1.1) under the condition p0 = q0.
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Theorem 3.2. Given ε > 0, let g : N0 × Cn → Cn be a function fulfilling the
condition (3.1) for all t ∈ N0 and v, w ∈ Cn, and let ψ : [0,∞) → [0,∞)be
denoted by ψ(y) = ρ(y) + ε for all y ≥ 0, where ρ : [0,∞)→ [0,∞) is a monotone
increasing function such that ρ(0) = 0 and there exists a positive constant L < 1

such that

(3.5) |ρ(y)− ρ(z)| ≤ L |y − z| ,

for all y, z ≥ 0. If a complex-valued sequence {pt}t∈N0
satisfies the inequality (3.2)

for all t ∈ N0, then there exists a complex-valued sequence {qt}t∈N0
satisfies the

difference equation (3.3) such that

(3.6) |qt+n−1 − pt+n−1| ≤
ε

1− L
+
Lt+n−1

1− L
|ψ (|q0 − p0|)− |q0 − p0||

for all t ∈ N0.

Proof. By applying the principle of recursive definition and using Theorem 3.2,
there exists {qt}t∈N0

satisfying qt+n = g (t, qt, . . . , qt+n−1) and

(3.7) |qt+n−1 − pt+n−1| ≤ ψt+n−1 (|q0 − p0|) ,

for all t ∈ N0. It ensue from (3.5) that ψ is also a contraction mapping with a
Lipschitz constant L. Then by using the contraction mapping principle, we have

(3.8)
∣∣ψt+n−1 (|q0 − p0|)− y∗

∣∣ ≤ Lt+n−1

1− L
|ψ (|q0 − p0|)− |q0 − p0||

for all t ∈ N0, where y∗ is the unique fixed point of ψ, from that we can get

(3.9) ψt+n−1 (|q0 − p0|) ≤ y∗ +
Lt+n−1

1− L
|ψ (|q0 − p0|)− |q0 − p0||

for all t ∈ N0. Using the inequality (3.7) in (3.9), we obtain that

(3.10) |qt+n−1 − pt+n−1| ≤ y∗ +
Lt+n−1

1− L
|ψ (|q0 − p0|)− |q0 − p0||

for all t ∈ N0.
Now, we claim that ψ(y) ≤ Ly + ε, ∀y ≥ 0. To prove this, we claim by using

contradiction method, let us assume the contrary that there is some y0 ≥ 0 such
that ψ(y0) > Ly0 + ε. Then we have

|ρ(y0)− ρ(0)| = |ψ(y0)− ψ(0)| > L |y0 − 0| .
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This gives that |ρ(y0)− ρ(0)| > L |y0 − 0|. This is contradiction to (3.5). Hence
there exists a unique fixed point y∗ such that y∗ = ψ(y∗) ≤ Ly∗ + ε. This gives

(3.11) y∗ ≤ ε

1− L
Using (3.11) in (3.10), we get

(3.12) |qt+n−1 − pt+n−1| ≤
ε

1− L
+
Lt+n−1

1− L
|ψ (|q0 − p0|)− |q0 − p0||

for all t ∈ N0. �

Now, the ensuing theorem shows that the Hyers-Ulam stability of the nth
order difference equation (1.1) under some more explicit condition for the
complex-valued function g and an additional condition that p0 = q0.

Corollary 3.1. Given real constants ε and L with 0 < L < 1, let g : N0×Cn → Cn

be a function fulfilling the condition

|g(t, v)− g(t, w)| ≤ L |v − w|

for all t ∈ N0 and v, w ∈ Cn. If a complex-valued sequence {pt}t∈N0
such that

|pt+n − g (t, pt, . . . , pt+n−1)| ≤ ε

for all t ∈ N0. Then there exists a complex-valued sequence {qt}t∈N0
such that

qt+n = g (t, qt, . . . , qt+n−1)

and
|qt+n−1 − pt+n−1| ≤

1

1− L
[
ε
(
1 + Lt+n−1)+ Lt+n−1 |q0 − p0|

]
for all t ∈ N0,

Proof. First, let us define a monotonically increasing contraction mappings ρ, ψ :

[0,∞) → [0,∞) defined by ρ(y) = L(y) and ψ(y) = ρ(y) + ε = Ly + ε, then by
using Theorem 3.2, we have

|qt+n−1 − pt+n−1| ≤
ε

1− L
+
Lt+n−1

1− L
|ψ (|q0 − p0|)− |q0 − p0||

=
1

1− L
[
ε
(
1 + Lt+n−1)+ Lt+n−1 |q0 − p0|

]
for all t ∈ N0. �
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