ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.8, 6341–6347 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.8.101 Special Issue on ICMA-2020

ULAM STABILITY OF NTH ORDER DIFFERENCE EQUATION

R. MURALI¹ AND D.I. ASUNTHA RANI

ABSTRACT. In this article, we enumerate the Hyers-Ulam stability of the *n*th order difference equation $y_{t+n} = g(t, y_t, \dots, y_{t+n-1})$ by using contraction mapping principle.

1. INTRODUCTION

The Ulam stability problem for various functional equations is invented by a famous talk of S.M. Ulam [19] in 1940. The first positive answer was given by D.H. Hyers [7] in 1941. Since then, many number of researchers have analyzed the Ulam stability problem for various functional equations in different spaces (see [2, 4, 6, 14]).

After that a generalization Ulam's problem was proposed by changing functional equations with differential and difference equations. The Hyers-Ulam stability of differential equations have been established in many papers (see [1, 8, 11, 17]) and the references cited therein. Now a days, only rare results are described in the literature regarding the Hyers-Ulam stability of difference equations (see [3, 5, 10, 12, 13, 15, 16, 18]).

In 2006, S.M. Jung et al. [9] investigate the Hyers-Ulam stability of the first order difference equation. Motivated and connected by the above result, here

¹Corresponding author

²⁰¹⁰ Mathematics Subject Classification. 35B35, 39B82, 44A10.

Key words and phrases. Hyers-Ulam stability, difference equation, contraction mapping.

our foremost aim is to establish the Hyers-Ulam stability of the *n*th order difference equation

(1.1)
$$y_{t+n} = g(t, y_t, \dots, y_{t+n-1})$$

for all $t \in \mathbb{N}_0$, by using Banach's contraction mapping theorem.

2. Preliminaries

The following definition is very useful to prove our main results.

Definition 2.1. Let the *n*th order difference equation (1.1) has the Hyers-Ulam stability if there exists a positive constant L < 1 with the following properties: for every $\epsilon > 0$ and for any $\rho : [0, \infty) \to [0, \infty)$ be a monotone increasing function, there exists a $\psi : [0, \infty) \to [0, \infty)$ such that

$$|p_{t+n} - g(t, p_t, \dots, p_{t+n-1})| \le \epsilon$$

for any complex-valued sequence $\{p_t\}_{t\in\mathbb{N}_0}$. Then there exists a complex-valued sequence $\{q_t\}_{t\in\mathbb{N}_0}$ satisfies the difference equation

$$q_{t+n} = g\left(t, q_t, \dots, q_{t+n-1}\right)$$

and $|q_{t+n-1} - p_{t+n-1}| \le \psi^{t+n-1} (|q_0 - p_0|)$ such that $|q_{t+n} - p_{t+n}| \le L(\epsilon)$. We call such *L* as the Hyers-Ulam stability constant for the difference equation (1.1).

3. Hyers-Ulam Stability

In this section, we establish the Hyers-Ulam stability of the nth order difference equation (1.1). First, we prove the theorem which will be very useful and powerful tool for proving our main results.

Theorem 3.1. Given $\epsilon > 0$, let $g : \mathbb{N}_0 \times \mathbb{C}^n \to \mathbb{C}^n$ be a function such that

(3.1)
$$|g(t,v) - g(t,w)| \le \rho (|v-w|)$$

where $v = v(p_t, \ldots, p_{t+n-1})$ and $w = w(q_t, \ldots, q_{t+n-1})$ for all $t \in \mathbb{N}_0$ and all $v, w \in \mathbb{C}^n$, where $\rho : [0, \infty) \to [0, \infty)$ is a monotone increasing function. If a sequence $\{p_t\}_{t\in\mathbb{N}_0}$ which satisfies the inequality

(3.2)
$$|p_{t+n} - g(t, p_t, \dots, p_{t+n-1})| \le \epsilon$$

ULAM STABILITY

for all $t \in \mathbb{N}_0$. Then there exists a sequence $\{q_t\}_{t \in \mathbb{N}_0}$ satisfies the difference equation

(3.3)
$$q_{t+n} = g(t, q_t, \dots, q_{t+n-1})$$

such that

(3.4)
$$|q_{t+n-1} - p_{t+n-1}| \le \psi^{t+n-1} \left(|q_0 - p_0| \right)$$

for all $t \in \mathbb{N}_0$, where the function $\psi : [0, \infty) \to [0, \infty)$ is denoted by $\psi(y) = \rho(y) + \epsilon$, for all $y \ge 0$ and ψ^{t+n-1} denotes the value of $t + n - 1^{th}$ iteration of ψ at y.

Proof. By using the principle of recursive definition, there exists a complexvalued sequence $\{q_t\}_{t\in\mathbb{N}_0}$ is uniquely determined by (3.3) provided that q_0 is given.

Now to prove the inequality (3.4), we have to apply an induction method on t. Using (3.1), (3.2) and (3.3) for t = 0, we have

$$|q_n - p_n| \le |g(0, q_0, \dots, q_{n-1}) - p_n|$$

$$\le |g(0, q_0, \dots, q_{n-1}) - g(0, p_0, \dots, p_{n-1})|$$

$$+ |g(0, p_0, \dots, p_{n-1}) - p_n|$$

$$\le \rho(|q_{n-1} - p_{n-1}|) + \epsilon$$

$$|q_n - p_n| = \psi^n(|q_0 - p_0|).$$

Hence by using induction hypothesis, we can assume that the inequality (3.4) is true by putting t = 1 in (3.4). Now, we have to prove the inequality (3.4) is true for some $t + n \in \mathbb{N}$. Then, by using (3.1), (3.2) and (3.3), we obtain

$$\begin{aligned} |q_{t+n} - p_{t+n}| &\leq |g(t, q_t, \dots, q_{t+n-1}) - p_{t+n}| \\ &\leq |g(t, q_t, \dots, q_{t+n-1}) - g(t, p_t, \dots, p_{t+n-1})| \\ &+ |g(t, p_t, \dots, p_{t+n-1}) - p_{t+n}| \\ &\leq \rho \left(|q_{t+n-1} - p_{t+n-1}| \right) + \epsilon \\ &\leq \psi \left(\psi^{t+n-1} \left(|q_0 - p_0| \right) \right) \\ &= \psi^{t+n} \left(|q_0 - p_0| \right) \end{aligned}$$

This proves the inequality (3.4) for all $t \in \mathbb{N}_0$.

Now, we have to prove the Hyers-Ulam stability of the *n*th order difference equation (1.1) under the condition $p_0 = q_0$.

Theorem 3.2. Given $\epsilon > 0$, let $g : \mathbb{N}_0 \times \mathbb{C}^n \to \mathbb{C}^n$ be a function fulfilling the condition (3.1) for all $t \in \mathbb{N}_0$ and $v, w \in \mathbb{C}^n$, and let $\psi : [0, \infty) \to [0, \infty)$ be denoted by $\psi(y) = \rho(y) + \epsilon$ for all $y \ge 0$, where $\rho : [0, \infty) \to [0, \infty)$ is a monotone increasing function such that $\rho(0) = 0$ and there exists a positive constant L < 1 such that

(3.5)
$$|\rho(y) - \rho(z)| \le L |y - z|,$$

for all $y, z \ge 0$. If a complex-valued sequence $\{p_t\}_{t\in\mathbb{N}_0}$ satisfies the inequality (3.2) for all $t \in \mathbb{N}_0$, then there exists a complex-valued sequence $\{q_t\}_{t\in\mathbb{N}_0}$ satisfies the difference equation (3.3) such that

(3.6)
$$|q_{t+n-1} - p_{t+n-1}| \le \frac{\epsilon}{1-L} + \frac{L^{t+n-1}}{1-L} |\psi(|q_0 - p_0|) - |q_0 - p_0||$$

for all $t \in \mathbb{N}_0$.

Proof. By applying the principle of recursive definition and using Theorem 3.2, there exists $\{q_t\}_{t\in\mathbb{N}_0}$ satisfying $q_{t+n} = g(t, q_t, \dots, q_{t+n-1})$ and

(3.7)
$$|q_{t+n-1} - p_{t+n-1}| \le \psi^{t+n-1} \left(|q_0 - p_0| \right),$$

for all $t \in \mathbb{N}_0$. It ensue from (3.5) that ψ is also a contraction mapping with a Lipschitz constant *L*. Then by using the contraction mapping principle, we have

(3.8)
$$|\psi^{t+n-1}(|q_0-p_0|)-y^*| \leq \frac{L^{t+n-1}}{1-L}|\psi(|q_0-p_0|)-|q_0-p_0||$$

for all $t \in \mathbb{N}_0$, where y^* is the unique fixed point of ψ , from that we can get

(3.9)
$$\psi^{t+n-1}(|q_0-p_0|) \le y^* + \frac{L^{t+n-1}}{1-L}|\psi(|q_0-p_0|) - |q_0-p_0||$$

for all $t \in \mathbb{N}_0$. Using the inequality (3.7) in (3.9), we obtain that

(3.10)
$$|q_{t+n-1} - p_{t+n-1}| \le y^* + \frac{L^{t+n-1}}{1-L} |\psi(|q_0 - p_0|) - |q_0 - p_0||$$

for all $t \in \mathbb{N}_0$.

Now, we claim that $\psi(y) \leq Ly + \epsilon$, $\forall y \geq 0$. To prove this, we claim by using contradiction method, let us assume the contrary that there is some $y_0 \geq 0$ such that $\psi(y_0) > Ly_0 + \epsilon$. Then we have

$$|\rho(y_0) - \rho(0)| = |\psi(y_0) - \psi(0)| > L |y_0 - 0|.$$

ULAM STABILITY

This gives that $|\rho(y_0) - \rho(0)| > L |y_0 - 0|$. This is contradiction to (3.5). Hence there exists a unique fixed point y^* such that $y^* = \psi(y^*) \le Ly^* + \epsilon$. This gives

$$(3.11) y^* \le \frac{\epsilon}{1-L}$$

Using (3.11) in (3.10), we get

(3.12)
$$|q_{t+n-1} - p_{t+n-1}| \le \frac{\epsilon}{1-L} + \frac{L^{t+n-1}}{1-L} |\psi(|q_0 - p_0|) - |q_0 - p_0||$$

for all $t \in \mathbb{N}_0$.

Now, the ensuing theorem shows that the Hyers-Ulam stability of the *n*th order difference equation (1.1) under some more explicit condition for the complex-valued function g and an additional condition that $p_0 = q_0$.

Corollary 3.1. Given real constants ϵ and L with 0 < L < 1, let $g : \mathbb{N}_0 \times \mathbb{C}^n \to \mathbb{C}^n$ be a function fulfilling the condition

$$|g(t,v) - g(t,w)| \le L |v - w|$$

for all $t \in \mathbb{N}_0$ and $v, w \in \mathbb{C}^n$. If a complex-valued sequence $\{p_t\}_{t \in \mathbb{N}_0}$ such that

$$\left|p_{t+n} - g\left(t, p_t, \dots, p_{t+n-1}\right)\right| \le \epsilon$$

for all $t \in \mathbb{N}_0$. Then there exists a complex-valued sequence $\{q_t\}_{t \in \mathbb{N}_0}$ such that

$$q_{t+n} = g\left(t, q_t, \dots, q_{t+n-1}\right)$$

and

$$|q_{t+n-1} - p_{t+n-1}| \le \frac{1}{1-L} \left[\epsilon \left(1 + L^{t+n-1} \right) + L^{t+n-1} |q_0 - p_0| \right]$$

for all $t \in \mathbb{N}_0$,

Proof. First, let us define a monotonically increasing contraction mappings ρ, ψ : $[0, \infty) \rightarrow [0, \infty)$ defined by $\rho(y) = L(y)$ and $\psi(y) = \rho(y) + \epsilon = Ly + \epsilon$, then by using Theorem 3.2, we have

$$\begin{aligned} |q_{t+n-1} - p_{t+n-1}| &\leq \frac{\epsilon}{1-L} + \frac{L^{t+n-1}}{1-L} |\psi(|q_0 - p_0|) - |q_0 - p_0|| \\ &= \frac{1}{1-L} \left[\epsilon \left(1 + L^{t+n-1} \right) + L^{t+n-1} |q_0 - p_0| \right] \end{aligned}$$

for all $t \in \mathbb{N}_0$.

R. MURALI AND D.I. ASUNTHA RANI

References

- [1] Q.H. ALQIFIARÝ, S.M. JUNG: Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Elec. J. Differential Equ., **80**(2014), 1–11.
- [2] T. AOKI: On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.
- [3] L. BEREZANSKÝ, M. ŇIGDÁ, E. ŠCHMEIDEĹ: Some stability conditions for scalar Volterra difference equations, Opuscula Math., **36**(4) (2016), 459–470.
- [4] N. BRILLOUET-BELLUOŤ, J. BRZDEK, K. ČIEPLINSKÍ: On some recent developments in Ulam's type stability, Abst. Appl. Anal., 2012 (2012), Article ID 716936, 41 pages. https://doi.org/10.1155/2012/716936
- [5] J. BRZDEK, D. POPÁ, B. XÚ: The Hyers-Ulam stability of non-linear recurrences, J. Math. Anal. Appl., 335 (2007), 443–449.
- [6] M. BURGEŔ, N. ÖZAWÁ, A. ŤHOM: On Ulam stability, Israel J. Math., 193 (2013), 109–129.
- [7] D.H. HYERS: On the stability of the linear functional equation, Pro. Nat. Aca. Sci. USA., 27 (1941), 222–224.
- [8] S.M. JUNG: Hyers-Ulam stability of linear differential equation of first order, Appl. Math. Lett., 17 (2004), 1135–1140.
- [9] S.M. JUNG, Y.W. NAM: On the Hyers-Ulam stability of the first-order difference equation, J. Func. Spaces, 2016 (2016), Article ID 6078298, 6 pages. https://doi.org/10.1155/2016/6078298
- [10] S.M. JUNG, Y.W. NAM: Hyers-Ulam stability of Pielou logistic difference equation, J. Nonlinear Sci. Appl., 10 (2017), 3115–3122.
- [11] Y. LÍ, Y. ŠHEŃ: Hyers-Ulam stability of non-homogeneous linear differential equations of second order, Int. J. Math. Math. Sci., 2009 (2009), Article ID 576852, 7 pages. https://doi.org/10.1155/2009/576852
- [12] Y. LIÚ, F. MENG: Stability Analysis of a Class of Higher Order Difference Equations, Abs. Appl. Anal., 2014 (2014), Article ID 434621, 7 pages. https://doi.org/10.1155/2014/434621
- [13] D. POPA: Hyers-Ulam stability of a linear recurrence, J. Math. Anal. Appl., 309 (2005), 591–597.
- [14] TH.M. RASSIAS: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297–300.
- [15] A.K. TRIPATHY: Hyers-Ulam stability of second order linear difference equations, Int. J. Diff. Equ. and App., 16(1) (2017), 53–65.
- [16] A.K. TRIPATHÝ, P. ŠENAPATÍ: Hyers-Ulam stability of first order linear difference operator on Banach spaces, J. Ad. Math., 14(1) (2017), 1–11.
- [17] M. OBLOZA: *Hyers stability of the linear differential equation*, Rockznik Nauk-Dydakt. Prace Math., **13** (1993), 259–270.

ULAM STABILITY

- [18] D. POPA: Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl., 309 (2005), 591–597.
- [19] S. M. ULAM: A Collection of Mathematical Problems, Interscience Publishers, New York, 1960.

DEPARTMENT OF MATHEMATICS SACRED HEART COLLEGE (AUTONOMOUS) TIRUPATTUR- 635 601,TAMIL NADU, INDIA. *Email address*: shcrmurali@yahoo.co.in

DEPARTMENT OF MATHEMATICS SACRED HEART COLLEGE (AUTONOMOUS) TIRUPATTUR - 635 601, TAMIL NADU, INDIA. *Email address*: asuntharaj93@gmail.com