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SOLUTION OF NONLINEAR FOURTH ORDER BOUNDARY VALUE
PROBLEMS BY SHOOTING TYPE DIFFERENTIAL TRANSFORM

ALGORITHM

GEORGE SUDHA1, T. R. SIVAKUMAR, AND D.S. DILIP

ABSTRACT. In this paper, Shooting Type Differential Transform Algorithm (STDTA)
has been used to solve some nonlinear fourth order boundary value problems.
Using STDTA, the problems are solved and the solution is calculated in the form
of a rapid convergent series. It demonstrates the efficiency and simplicity of the
proposed method.

1. INTRODUCTION

The differential transform method (DTM) is an analytical method based on
the Taylor expansion. This method gives an analytical solution in the form of
a polynomial. The concept of differential transform method was first proposed
and applied to solve linear and nonlinear initial value problem in electric circuit
analysis by Zhou [1]. The differential transform method is an iterative proce-
dure that is described by the transformed equations of original functions for
solution of differential equations. In this paper, three nonlinear fourth order
boundary value problems are solved using shooting type differential transform
algorithm. In Section 2, we give some basic properties of one-dimensional DTM
and explain the procedure of STDTA. In Section 3, we have applied the method
to solve nonlinear boundary value problems.
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2. ONE-DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD AND THEIR

PROPERTIES

In this section, we first give some basic properties [2] of one-dimensional dif-
ferential transform method. Differential transform of a function y(x) is defined
as follows

(2.1) Y (k) =
1

k!

dk(y)

dxk
,

where y(x) is the original function and Y (k) is the transformed function for
k = 0, 1, 2, . . .. The differential inverse transform of Y (k) is defined as

(2.2) y(x) =
∞∑
k=0

Y (k)xk.

From equations (2.1) and (2.2) we get

(2.3) y(x) =
∞∑
k=0

xk

k!

dky

dxk
.

Theorem 2.1. If f(x) = g(x)± h(x), then F (k) = G(k)±H(k).

Theorem 2.2. If f(x) = λg(x), then F (k) = λG(k) where λ is a constant.

Theorem 2.3. If f(x) = g(x)h(x), then F (k) =
∑k

r=0G(r)H(k − r).

Theorem 2.4. If f(x) = g(x)
dg(x)

dx
, then F (k) =

∑k
r=0(k−r+1)G(r)G(k−r+1).

Theorem 2.5. If f(x) = xm, then F (k) = δ(k−m) where δ(k−m) =

1, k = m

0, k 6= m.

Let B be a Banach space and consider the functional equation defined on the
Banach space B, Ty = b where T is an operator from B to B, b is a given func-
tion of B, and for each satisfying the functional equation [3, 4] is the solution.
Assume that the functional equation has a unique solution for each b ∈ B.

The operator T consists of both linear and nonlinear terms, the linear term
is decomposed into L1 + L2, where L1 is the invertible, highest order derivative
and L2 is the remainder of the linear operator. Thus T = L1 + L2 +N where N
is a nonlinear operator. Hence the functional equation becomes

L1y = b− L2y −Ny.
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Taking the Differential Transform on both sides of the above equation, we get
the transformed equation as

(2.4) Y (k + n) =
F (k)

(k + n)!
,

where F (k) is the differential transform of

f(x, y, y′, y′′, . . . , y(n−1)) = b− L2y −Ny.

Then transformed conditions given with the problem can be written as

(2.5) Y (k) = J, Y (m) =
N∑
k=0

m−1∏
i=1

(k − i)Y (k) = Im, (m < n),

where m is the order of the derivative in the boundary conditions and J, Im are
real constants. Using equations (2.4) and (2.5) the values of Y (i), i = 1, 2, 3, . . .

can determined and then using inverse differential transformation, the following
approximate solution can be determined as

(2.6) YN =
N∑
k=0

Y (k)xk.

Usually DTM is used for solving initial value problems. To solve boundary
value problems efficiently the authors [5,6] have introduced Shooting Type Dif-
ferential Transform Algorithm (STDTA). The basic steps of STDTA are as follows:

(i) Converting the given boundary value problem into an initial value prob-
lem by assuming the missing initial conditions;
(If the differential equation is of order n and there are m conditions
given at the initial point and the remaining n −m conditions are given
at other points, assumptions are made on the remaining n − m initial
conditions. In the case of fourth order boundary value problem one
assumes u′′

(0) = α, u
′′′
(0) = β.)

(ii) applying the DTM to the converted initial value problem;(
In the case of fourth order boundary value problem the assumed con-

dition transforms to U(2) = α
2!
, U(3) = β

3!
.
)

(iii) computing the coefficients Y (k+n) for k ≥ 0 using (2.4) up to a specified
level; and

(iv) finding the value(s) of the assumed condition(s) by applying the bound-
ary condition(s) at the other point to the approximate solution (2.6).
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(In the case of fourth order boundary value problem α, β the two as-
sumed constants are found out by applying the condition at the second
point to the approximate solution).

The effectiveness of STDTA is demonstrated here by applying it to some fourth
order nonlinear boundary value problems.

3. ILLUSTRATIVE EXAMPLES

Example 1. Consider the nonlinear boundary value problem of fourth order [7]:

(3.1) u(4)(x) = u2 − x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x− 48

with boundary conditions

(3.2) u(0) = u
′
(0) = 0, u(1) = 1, u

′
(1) = 1.

The Exact solution is u(x) = x5 − 2x4 + 2x2. Taking the differential transform of
(3.1), yields

U(k + 4) =
1

(k + 1)(k + 2)(k + 3)(k + 4)

[ k∑
r=0

U(r)U(k − r)− δ(k − 10)

+ 4δ(k − 9)− 4δ(k − 8)− 4δ(k − 7) + 8δ(k − 6)

− 4δ(k − 4) + 120δ(k − 1)− 48δ(k − 0)
]
.

In the modified approach, one assumes that u′′
(0) = α, u

′′′
(0) = β. Hence

U(0) = 0, U(1) = 0, U(2) = α
2!

, U(3) = β
3!

. Putting k = 0, 1, 2, 3, . . . , in the trans-
formed equation, the series coefficients U(4), U(5), U(6), U(7), U(8), U(9), . . . ,
can be obtained as U(4) = −2, U(5) = 1, U(6) = 0, U(7) = 0, U(8) = (α2−16)

47040
,

U(9) = αβ
18144

, and so on. Then the successive approximations to the solutions

are obtained, using un(x) =
n∑
k=0

U(k)xk. The ninth approximation is u9(x) =

α
2
x2 + β

6
x3− 2x4 + x5 + (α2−16)

47040
x8 + αβ

18144
x9. The ith approximation to the solution

u(x), ui(x) is the terms up to xi of the above expression.
Now applying the condition u(1) = 1 and u′

(1) = 1 to un(x), the approximate
values for α and β, namely αn and βn for different values of n, are obtained.
They are tabulated in Table 1. Since U(6) and U(7) are zero for n = 6, 7 there
will be no changes in u6(x) and u7(x). From the table it is clear that the sequence
αn and βn converges. Substituting these values of αn, βn in the corresponding
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TABLE 1. Values of αn and βn

n αn βn

5 4 0
6 4 0
7 4 0
8 4 0
9 4 0

TABLE 2. Comparison with the existing results

x DTM VIM Exact Solution
0.1 0.0198100 0.0198099 0.0198100
0.2 0.0771200 0.0771199 0.0771200
0.3 0.1662300 0.1662299 0.1662300
0.4 0.2790400 0.2790399 0.2790400
0.5 0.4062500 0.4062499 0.4062500
0.6 0.5385600 0.5385599 0.5385599
0.7 0.6678700 0.6678699 0.6678700
0.8 0.7884800 0.7884799 0.7884800
0.9 0.8982900 0.8982899 0.8982900
1.0 1.0000000 0.9999999 1.0000000

un(x), the nth approximation to the solution, u(x) is obtained. Table 2 gives
the values of un(x), evaluated at x = 0.1, 0.2, 0.3, 0.4, . . . , 0.9, 1.0, for different
values of n are compared with the variational iteration method [7] and the
Exact solution. From the table we see that DTM is a better approximation than
VIM for this problem.

Example 2. Consider the nonlinear beam equation [8]

(3.3) y(4)(x) = c(y(x))2 + 1, 0 ≤ x ≤ 2,

subject to boundary conditions,

(3.4) y(0) = y′(0) = y(2) = y′(2) = 0.
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TABLE 3. Values of αn and βn

n αn βn

4 0.33333333 −1
5 0.33333333 −1
6 0.33333333 −1
7 0.33333333 −1
8 0.34464578 −1.02036264

Let c = 1. Taking differential transform of (3.3), yields

Y (k + 4) =
1

(k + 1)(k + 2)(k + 3)(k + 4)

[ k∑
r=0

Y (r)Y (k − r) + δ(k − 0)
]
.

Proceeding as in Example 1, the series coefficients Y (4), Y (5), Y (6), . . . , can be
obtained as

Y (4) =
1

24
, Y (5) = 0, Y (6) = 0, Y (7) = 0, Y (8) =

α2

6720
,

and so on.
Then the successive approximations to the solution are obtained,

using yn(x) =
n∑
k=0

Y (k)xk. The 8th approximation is

y8(x) =
α

2
x2 +

β

6
x3 +

1

24
x4 +

α2

6720
x8.

The ith approximation to the solution y(x), yi(x) is the terms up to xi of the
above expression. Now applying the condition y(2) = y

′
(2) = 0 to yn(x), the

approximate values for α and β, namely αn and βn, for different values of n,
are obtained. They are tabulated in Table 3. From this table it is clear that the
sequence αn and βn converges.

Substituting these values of αn, βn in the corresponding yn(x), the nth approx-
imation to the solution, y(x) is obtained. Table 4 gives the values of yn(x), eval-
uated at x = 0.0, 0.1, 0.2, 0.3, . . . , 2.0, for different values of n. y4 = 1

6
x2(1− x

2
)2 =

1
24
x2(2− x)2.
Also y4 = y5 = y6 = y7. They are symmetric about the line x = 1. But

we see that y8 looses the symmetry. Table 5 gives the comparison with the
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TABLE 4. Convergence of yn

x y4 = y5 = y6 = y7 y8

0.0, 2.0 0.00000000 0.00000000
0.1, 1.9 0.00150417 0.00155734, 0.00164721
0.2, 1.8 0.00539999 0.00539999, 0.00588153
0.3, 1.7 0.01083749 0.01125493, 0.01174339
0.4, 1.6 0.01706666 0.01775447, 0.01840487
0.5, 1.5 0.02343749 0.02485162, 0.02516303
0.6, 1.4 0.02939999 0.03070349, 0.03143454
0.7, 1.3 0.03450417 0.03611267, 0.03675125
0.8, 1.2 0.03839999 0.04028536, 0.04075652
0.9, 1.1 0.04083749 0.04295259, 0.04320231

1.0 0.04166666 0.04394679

existing results: Iteration of the integral equation (IIE), Trapezoidal rule(TRAP),
Simpson rule (SIMP), Classical Adomian method (ADM) [9].

Example 3. Consider the nonlinear boundary value problem [10,11]

(3.5) v(4) − v2 = et − t4 − e2t − 2t2et, 0 < t < 1,

subject to

(3.6) v(0) = 1, v(1) = 1 + e, v
′
(0)− v(0) = 0, v

′
(1)− v(1) = 1.

The Exact solution is v(t) = t2 + et.
Taking the differential transform of (3.5), yields

V (k + 4) =
1

(k + 1)(k + 2)(k + 3)(k + 4)

[ k∑
r=0

V (r)V (k − r) + 1

k!
− δ(k − 4)

−2k

k!
− 2

k∑
r=0

δ(r − 2)

(k − r)!

]
.

Proceeding as in Example 1, the series coefficients V (4), V (5), V (6), . . . , can be
obtained as V (4) = 1

24
, V (5) = 1

120
, V (6) = 1

360
[α − 5

2
], V (7) = 1

840
[α + β

3
− 19

6
],

V (8) = 1
40320

[6α2 + 8β − 61], V (9) = 1
3024

[αβ
6
− 59

120
], and so on.

The 9th approximation is v9(t) = 1+ t+ α
2
t2+ β

6
t3+ 1

24
t4+ 1

120
t5+ 1

360
[α− 5

2
]t6+

1
840

[α + β
3
− 19

6
]t7 + 1

40320
[6α2 + 8β − 61]t8 + 1

3024
[αβ

6
− 59

120
]t9.
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TABLE 5. Comparison with the existing results

x DTM IIE TRAP SIMP ADM
0.0, 2.0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.1, 1.9 0.00150417 0.00150566 0.00150566 0.00150566 0.00150565
0.2, 1.8 0.00539999 0.00540549 0.00540548 0.00540549 0.00540547
0.3, 1.7 0.01083749 0.01084878 0.01084878 0.01084878 0.01084876
0.4, 1.6 0.01706666 0.01708484 0.01708483 0.01708484 0.01708480
0.5, 1.5 0.02343749 0.02346298 0.02346295 0.02346298 0.02346292
0.6, 1.4 0.02939999 0.02943253 0.02943250 0.02943253 0.02943246
0.7, 1.3 0.03450417 0.03454290 0.03454287 0.03454290 0.03454281
0.8, 1.2 0.03839999 0.03844357 0.03844355 0.03844357 0.03844347
0.9, 1.1 0.04083749 0.04088413 0.04088413 0.04088413 0.04088403

1.0 0.04166666 0.04171435 0.04171435 0.04171435 0.04171425

TABLE 6. Values of αn and βn

n αn βn

7 2.99971033 1.00104058
8 2.99996192 1.00013317
9 2.99999566 1.00001491

The ith approximation to the solution v(t), vi(t) is the terms up to ti of the
above expression.

Now applying the condition, v(1) = 1 + e and v
′
(1) = 2 + e to vn(t), the

approximate values for α and β, namely αn and βn, for different values of n,
are obtained. They are tabulated in Table 6. From this table it is clear that
the sequence αn and βn converges. Substituting these values of αn, βn in the
corresponding vn(t), the nth approximation to the solution, v(t)is obtained. Ta-
ble 7 gives the values of vn(t), evaluated at t = 0.1, 0.2, 0.3, 0.4, . . . , 0.9, 1.0, for
different values of n.
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TABLE 7. Convergence of vn

x v7 v8 v9 Exact Solution
0.1 1.11517065 1.11517083 1.11517089 1.11517092
0.2 1.26140644 1.261402494 1.26140269 1.26140276
0.3 1.43987773 1.439858413 1.43985868 1.43985881
0.4 1.65187727 1.651824351 1.65182451 1.65182469
0.5 1.89883294 1.89872128 1.89872104 1.89872127
0.6 2.18232194 2.18211959 2.18211855 2.18211880
0.7 2.50408633 2.50375478 2.50375248 2.50375271
0.8 2.86605007 2.86554480 2.86554078 2.86554093
0.9 3.27033767 3.26960912 3.26960305 3.26960311
1.0 3.71929458 3.71828982 3.71828183 3.71828183

4. CONCLUSION

In this work, Shooting Type Differential Transform Algorithm has been suc-
cessfully applied to solve nonlinear boundary value problems. The three exam-
ples solved revealed that the method is fast, accurate and easy to apply.
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