Advances in Mathematics: Scientific Journal **9** (2020), no.8, 6369–6376 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.8.104 Special Issue on ICMA-2020

ON FUZZY TOPOLOGICAL BRK-SUBALGEBRAS

S. SIVAKUMAR, S. KOUSALYA, AND A. VADIVEL¹

ABSTRACT. In this paper, fuzzy topological BRK-subalgebras of a BRK-algebras is introduced. Also, fuzzy topological BRK-ideals in BRK-algebras is also introduced and discussed some of their properties.

1. INTRODUCTION

Imai and Iseki [4] subjected two classes of abstract algebras: BCK-algebras and BCI-algebras in the year of 1996. In 1983, the notion of a BCH-algebra was introduced by Hu and Li [3], which is a generalization of BCK and BCIalgebras. In 2002, a new notion B-algebra was introduced by Neggers and Kim [9]. Also a BF-algebra and BG-algebra was introduced by Walendziak [13] in 2007 and C. B. Kim and H. S. Kim [6], which is a generalization of Balgebra. The concept of a fuzzy set was introduced in [14], provides a general topology called fuzzy topological spaces. The structure of a fuzzy topological spaces by D. H. Foster [2] combined with a fuzzy group. A. Rosenfeld [11] has formulate the elements of a theory of fuzzy topological groups. In 2012, R. K. Bandaru [10] introduced BRK-algebra, which is a generalization of BCK/BCI/BCH/Q/QS/BM-algebras [5,7,8]. In [1], El-Gendy introduced the notion of fuzzy BRK-ideal of BRK-algebra. S. Sivakumar et al. introduced a topology on BRK-algebra [12] and also studied several concepts. In the present paper, $f \tau BRK SA$ is introduced in a BRK-algebras.

³corresponding author

²⁰¹⁰ Mathematics Subject Classification. 94D05, 06F35, 03G25.

Key words and phrases. BRK Alg, fBRK Cts, $f\tau BRK SA$, $f\tau BRKI$.

2. PRELIMINARIES

Definition 2.1. [10] A BRK-algebra (briefly, BRK Alg) $(I, \star, 0)$ is a non-empty set I with a constant 0 and a binary operation \star satisfying the following axioms:

$$(BRK_1) i_1 \star 0 = i_1,$$

$$(BRK_2) (i_1 \star i_2) \star i_1 = 0 \star i_2$$

for any $i_1, i_2 \in I$. In a *BRK* Alg I, \leq a partially ordered relation can be defined by $i_1 \leq i_2$ iff $i_1 \star i_2 = 0$.

Definition 2.2. [10] Let I be a BRK Alg and $a \in I$. Define a right map $R_a : I \rightarrow I$ by $R_a(i) = i \star a \forall i \in I$.

Definition 2.3. [12] Let $(I, \star, 0)$ be a BRK Alg and τ a topology on I. Then $I = (I, \star, 0, \tau)$ is called a topological BRK Alg (briefly, τBRK Alg), if " \star " is continuous or equivalently, for any $m, n \in X$ and $\forall O$ open set of $m \star n$, \exists two open sets M&N respectively, such that $M \star N$ is a subset of O.

Definition 2.4. [12] Let a non-empty subset M of a τBRK Alg I, then M is called τBRK -subalgebra (briefly, τBRK sub Alg) of I if

$$i_1 \star i_2 \in M \ \forall \ i_1, i_2 \in M.$$

Definition 2.5. [12] Let I be a τBRK Alg and D be a subset of I, then D is called a τBRK -ideal (briefly, τBRK I) of I, if for any $i_{11}, i_{22} \in I$:

- (*i*) $0 \in D$,
- (*ii*) $0 \star (i_{11} \star i_{22}) \in D$ and $0 \star i_{22} \in D$ imply $i_{11}, i_{22} \in I$.

Definition 2.6. [1] Let I be a set. A function $\mu_I : I \to [0, 1]$ where μ_I a fuzzy set in I.

Definition 2.7. [2] A fuzzy topology (briefly, ft) on a set I is a family τ of fuzzy subsets in I satisfies

- (i) $\forall c \in [0,1], K_c \in \tau$, where K_c have constant membership functions with the value c,
- (*ii*) If $K, L \in \tau$, then $K \cap L \in \tau$,
- (*iii*) If $K_j \in \tau \ \forall \ j \in J$, then $\bigcup_{j \in J} K_j \in \tau$.

The pair (I, τ) is called a fuzzy topological space (briefly, fts) and members of τ are fuzzy open (briefly, τfo) subsets.

Definition 2.8. [2] Let M be a fuzzy subset in I and τ a ft on I. Then the induced ft on M is the family of fuzzy subsets of M which are the intersection with M of τ fo subsets in I. The induced ft is denoted by τ_M and the pair (M, τ_M) is called a fuzzy subspace of (I, τ) .

3. FUZZY TOPOLOGICAL BRK-SUBALGEBRAS

Definition 3.1. The pair (I, τ) is called a *fts*, then it satisfies a *BRK* Alg properties in $(I, \star, 0, \tau)$ it is called a *fuzzy BRK* topological spaces (briefly, *fBRKts*) and members of τ are *BRK*-open *fuzzy* (briefly, *BRK* of) sets.

Definition 3.2. A fuzzy subset K in a BRK Alg, $(I, \star, 0)$ with membership function μ_K is called a fuzzy BRK-subalgebra (briefly, fBRK SA) of I if

$$(\forall i_1, i_2 \in I) [\mu_K(0 \star (i_1 \star i_2)) \ge \min\{\mu_K(0 \star i_1), \mu_K(0 \star i_2)\}].$$

Example 1. Let $(I = \{0, a_{a_1}, a_{a_2}, a_{a_3}\}, \star, 0)$ be a BRK Alg defined by

*	0	a_1	a_2	a_3
0	0	0	a_2	a_2
a_1	a_1	0	a_2	a_2
a_2	a_2	a_2	0	0
a_3	a_3	a_3	a_1	0

A fuzzy subset K in I defined by $\mu_K(a_3) = 0.4$ and $\mu_K(a_x) = 0.8$ for all $a_x \neq a_3$ is a fBRK SA of I.

Definition 3.3. Let (I, τ) and (J, τ') be two fts's. A mapping ψ of (I, τ) into (J, τ') is fuzzy BRK continuous (briefly, fBRK Cts) if for each fos U in τ' , the inverse image $\psi^{-1}(U)$ is fBRKo in τ . Conversely, ψ is fuzzy BRK open (briefly, fBRKO) if for each fos V in τ , the image $\psi(V)$ is fBRKo in τ' .

Definition 3.4. Let (A, τ_A) and (B, τ'_B) be fuzzy subspaces of fts's (I, τ) and (J, τ') respectively and let a map $\psi : (I, \tau) \to (J, \tau')$. Then a mapping ψ of (A, τ_A) into (B, τ'_B) if $\psi(A) \subset B$. Furthermore ψ is relatively fuzzy BRK continuous (briefly, rfBRK Cts) if for each fos V' in τ'_B , the intersection $\psi^{-1}(V') \cap A$ is fBRKo in τ_A . Conversely, ψ is relatively fuzzy BRK open (briefly, rfBRKO) if for each fos U' in τ_A , the image $\psi(U')$ is fBRKo in τ'_B . **Proposition 3.1.** Let $(A, \tau_A), (B, \tau'_B)$ be fuzzy subspaces of fBRKts's I and J respectively. Let ψ be a fBRK Cts mapping of (I, τ) into (J, τ') such that $\psi(A) \subset B$. Then ψ is a rfBRK Cts mapping of (A, τ_A) into (B, τ'_B) .

Proposition 3.2. Let ψ be a homomorphism of a *BRK Alg's I* into *J* and *S* a *fBRK SA* of *J* with membership function μ_S . Then the inverse image $\psi^{-1}(S)$ of *S* is a *fBRK SA* of *I*.

Proof. Let $i_1, i_2 \in I$. Then

6372

$$\mu_{\psi^{-1}(S)}(0 \star (i_1 \star i_2)) = \mu_S(\psi(0 \star (i_1 \star i_2))) = \mu_S(\psi(0 \star i_1)\psi(0 \star i_2))$$

$$\geq \min\{\mu_S(\psi(0 \star i_1)), \mu_S(\psi(0 \star i_2))\}$$

$$= \min\{\mu_{\psi^{-1}(S)}(0 \star i_1), \mu_{\psi^{-1}(S)}(0 \star i_2)\}.$$

This completes the proof.

Definition 3.5. A fuzzy subset K in a BRK Alg I with μ_K is said to be fuzzy BRK-sup property (briefly, fBRK SP) if for any subset $P \subset I$, there exists $p_0 \in P$ such that

(3.1)
$$\mu_K(0 \star p_0) = \sup_{p \in P} \mu_K(0 \star p).$$

Proposition 3.3. Let ψ be a homomorphism of a *BRK Alg's I* onto *J* and let *S* be a *fBRK SA* of *I* that has the *fBRK SP*. Then the image $\psi(K)$ of *K* is a *fBRK SA* of *J*.

Proof. For $j_1, j_2 \in J$, let $x_0 \in \psi^{-1}(j_1)$; $y_0 \in \psi^{-1}(j_2)$ such that

$$\mu_K(0 \star x_0) = \sup_{t \in \psi^{-1}(j_1)} \mu_K(0 \star t),$$
$$\mu_K(0 \star y_0) = \sup_{t \in \psi^{-1}(j_2)} \mu_K(0 \star t).$$

Then, by $\mu_{\psi}(0 \star K)$,

$$\mu_{\psi(K)}(0 \star (j_1 \star j_2)) = \sup t \in \psi^{-1}(j_1 j_2) \mu_K(0 \star t) \ge \mu_K(0 \star (x_0 \star y_0))$$

$$\ge \min\{\mu_K(0 \star x_0), \mu_K(0 \star y_0)\}$$

$$= \min\{\sup_{t \in \psi^{-1}(j_1)} \mu_K(0 \star t), \sup_{t \in \psi^{-1}(j_2)} \mu_K(0 \star t)\}$$

$$= \min\{\mu_{\psi(K)}(0 \star j_1), \mu_{\psi(K)}(0 \star j_2)\},$$

ending the proof.

Definition 3.6. Let I be a BRK Alg and τ a ft on I. Let S be a fBRK SA of I with induced topology τ_S . Then S is called a fuzzy topological BRK-subalgebra (briefly, $f\tau BRK$ SA) of I if $\forall a \in I$ the mapping $R_a : (0 \star i) \rightarrow (i \star a)$ of $(S, \tau_S) \rightarrow (S, \tau_S)$ is rfBRK Cts.

Theorem 3.1. Let I, J be a BRK Alg's and a homomorphism $\psi : I \to J$. let τ and τ' be ft's on I & J respectively, such that $\tau = \psi^{-1}(\tau')$. Let S be a $f\tau BRK SA$ of J with μ_S . Then $\psi^{-1}(S)$ is a $f\tau BRK SA$ of I with $\mu_{\psi^{-1}(S)}$.

Proof. To show that, $\forall a \in I$, the mapping

(3.2)
$$R_a: (0 \star i) \to (i \star a) \text{ of } (\psi^{-1}(S), \tau_{\psi^{-1}}(S)) \to (\psi^{-1}(S), T_{\psi^{-1}}(S))$$

is rfBRK Cts. Let U_0 be an fBRKo set in $\tau_{\psi^{-1}}(S)$ on $\psi^{-1}(S)$. Since ψ is a fBRK Cts mapping of (I, τ) into (J, τ') , it follows from Proposition 3.1 that ψ is a rfBRK Cts mapping of $(\psi^{-1}(S), \tau_{\psi^{-1}}(S))$ into (S, τ'_S) .

Note that $\exists fos V_0 \in \tau'_S \ni \psi^{-1}(V_0) = U_0$. The membership function of $R_a^{-1}(U_0)$ is given by

(3.3)
$$\mu_{R_a^{-1}(U_0)}(0 \star i) = \mu_{U_0}(R_a(0 \star i)) = \mu_{U_0}(i \star a) = \mu_{\psi^{-1}(V_0)}(i \star a)$$
$$= \mu_{V_0}(\psi(i \star a)) = \mu_{V_0}(\psi(0 \star i)\psi(0 \star a)).$$

As S is a $f \tau BRK SA$ of J, the mapping

(3.4)
$$R_b: (0 \star j) \to (j \star b) \text{ of } (S, \tau'_S) \to (S, \tau'_S)$$

is rfBRK Cts for each $b \in J$. Hence

$$\mu_{R_a^{-1}(U_0)}(0 \star i) = \mu_{V_0}(\psi(0 \star i)\psi(0 \star R_a)) = \mu_{V_0}(\psi(0 \star R_a)(\psi(0 \star i)))$$
$$= \mu_{\psi(0 \star R_a)^{-1}(V_0)}(\psi(0 \star i)) = \mu_{\psi^{-1}(\psi(R_a)^{-1}(V_0))}(0 \star i),$$

which implies that $R_a^{-1}(U_0) = \psi^{-1}(\psi(a)_r^{-1}(V_0))$ so that

(3.5)
$$R_a^{-1}(U_0) \cap \psi^{-1}(S) = \psi^{-1}(\psi(R_a)^{-1}(V_0)) \cap \psi^{-1}(S)$$

is open in the induced ft on $\psi^{-1}(S)$. The proof is complete.

We say that μ_S of a fBRK SA S of a BRK Alg I is ψ -invariant [11] if $\forall i_1, i_2 \in I$, $\psi(i_1) = \psi(i_2)$ implies $\mu_S(0 \star i_1) = \mu_S(0 \star i_2)$. Clearly, $\psi(S)$ of S is a homomorphic image then a fBRK SA.

Theorem 3.2. Let I, J be a BRK Alg's and a homomorphism ψ of I onto J, let τ and τ' be a ft's on $I \& J \ni \psi(\tau) = \tau'$. Let S be a $f\tau BRK SA$ of I. If μ_S of S is ψ -invariant, then $\psi(S)$ is a $f\tau BRK SA$ of J.

Proof. It is sufficient that,

(3.6)
$$R_b: (0 \star j) \to (j \star b) \text{ of } (\psi(S), \tau'_{\psi(S)}) \to (\psi(S), \tau'_{\psi(S)})$$

is $rfBRK \ Cts$ for each $b \in J$. Note that ψ is rfBRKO for if $U_0' \in \tau_S$, there exists $U_0 \in \tau \ni U_0' = U_0 \cap S$ and by the ψ -invariance of μ_S ,

(3.7)
$$\psi(U_0) = \psi(U_0) \cap \psi(S) \in \tau'_{\psi(S)}$$

Let V_0' be a fos in $\tau'_{\psi(S)}$. Since ψ is onto, $\forall b \in J \exists a \in I$ such that $b = \psi(a)$. Hence

$$\begin{split} \mu_{\psi^{-1}(R_b^{-1}(V_0'))}(0\star i) &= \mu_{\psi^{-1}(\psi(R_a)^{-1}(V_0'))}(0\star i) = \mu_{\psi(R_a)^{-1}(V_0')}(\psi(0\star i)) \\ &= \mu'_{V_0}(\psi(0\star R_a)(\psi(0\star i))) = \mu'_{V_0}(\psi(0\star i)\psi(0\star R_a)) \\ &= \mu'_{V_0}(\psi(0\star (i\star R_a))) = \mu_{\psi^{-1}(V_0')}(0\star (i\star R_a)) \\ &= \mu_{\psi^{-1}(V_0')}(R_a\star (0\star i)) = \mu_{R_a^{-1}(\psi^{-1}(V_0'))}(0\star i), \end{split}$$

which implies that $\psi^{-1}(R_b^{-1}(V_0')) = R_a^{-1}(\psi^{-1}(V_0')).$

By hypothesis, $R_a : (0 \star i) \to (0 \star (i \star a))$ is a rfBRK Cts mapping $(S, \tau_S) \to (S, \tau_S)$ and ψ is a rfBRK Cts mapping $(S, \tau_S) \to (\psi(S), \tau'_{\psi(S)})$. Hence

(3.8)
$$\psi^{-1}(R_b^{-1}(V_0')) \cap T = R_a^{-1}(\psi^{-1}(V_0')) \cap S$$

is open in τ_S . Since ψ is rfBRKO,

(3.9)
$$\psi(\psi^{-1}(R_b^{-1}(V_0')) \cap S) = R_b^{-1}(V_0') \cap \psi(S)$$

is fBRKo in $\tau'_{\psi(S)}$. The proof is complete.

4. Fuzzy topological BRK-ideals

Definition 4.1. A fuzzy subset K in I with μ_K is called a fuzzy BRK-ideal (briefly, fBRKI) of I if

- (i) $(\forall i_1 \in I), [\mu_K(0 \star 0) \ge \mu_K(0 \star i_1)],$
- (*ii*) $(\forall i_1, i_2 \in I), [\mu_K(0 \star i_1) \ge \min\{\mu_K(0 \star (i_1 \star i_2)), (\mu_K(0 \star i_2))\}].$

Proposition 4.1. Let ψ be a homomorphism of a *BRK Alg's I* into *J* and *L* is a *fBRKI* of *J* with μ_L . Then the inverse image $\psi^{-1}(L)$ of *L* is a *fBRKI* of *I*.

Proof. Since ψ is a homomorphism of $(I, \star, 0)$ into $(J, \star', 0')$, then $\psi(0) = 0'$. By assumption,

(4.1)
$$\mu_L(\psi(0\star 0)) = \mu_L(0\star 0') \ge \mu_L(0\star j), \ \forall \ j \in J.$$

In particular, $\mu_L(\psi(0 \star 0)) \ge \mu_L(\psi(0 \star i)) \forall i \in I$. Thus

(4.2)
$$\mu_{\psi^{-1}(L)}(0 \star 0) \ge \mu_{\psi^{-1}(L)}(0 \star i),$$

which proves (i).

Now, let $i_1, i_2 \in I$. Then by μ_L ,

$$\mu_{\psi^{-1}(L)}(0 \star i_1) = \mu_L(\psi(0 \star (i_1 \star i_2))) = \mu_L(\psi(0 \star (i_1 \star i_2))\psi(0 \star i_2))$$

$$\geq \min\{\mu_L(0 \star (i_1 \star i_2)), \mu_L(0 \star i_2)\}$$

which proves (ii). The proof is complete.

Definition 4.2. Let $(I, \star, 0, \tau)$ be a τBRK Alg. A fuzzy set μ_I in I is called an fuzzy topological BRK-ideal (briefly, $f\tau BRKI$) of I if

(4.3)
$$(BRKI_1) \mu_I(0) \ge \mu_I(i_0),$$

(4.4) $(BRKI_2) \mu_I(0 \star i_1) \ge \min\{\mu_I(0 \star (i_1 \star i_2)), \mu_I(0 \star i_2)\}, \forall i_1, i_2 \in I.$

Since any fBRK I is a fBRK SA, then a $f\tau BRK I$ is a $f\tau BRK SA$ and from Theorem 3.1 and Proposition 4.1, we obtain a corollary 4.1.

Corollary 4.1. Let I, J be a *BRK* Alg's and a homomorphism $\psi : I \to J$, let τ and τ' be ft's on I & J respectively, such that $\tau = \psi^{-1}(\tau')$. Let H be a $f\tau BRKI$ of J with μ_H . Then $\psi^{-1}(H)$ is a $f\tau BRKI$ of I with $\mu_{\psi^{-1}}(H)$.

If μ_H of a *fBRKI H* of a *BRK Alg I* is ψ -invariant, then $\psi(H)$ of *H* is a homomorphic image of a *fBRKI*. Thus Theorem 3.2 follows a Corollary 4.2.

Corollary 4.2. Given I, J be a BRK Alg's and a homomorphism ψ of I onto J, let τ and τ' be a ft's on I and J such that $\psi(\tau) = \tau'$. Let H be a $f\tau BRKI$ of I. If μ_H of H is ψ -invariant, then $\psi(H)$ is a $f\tau BRKI$ of J.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their valuable comments and helpful suggestions for improvement of the original manuscript.

S. SIVAKUMAR, S. KOUSALYA, AND A. VADIVEL

References

- [1] O. R. EL-GENDY: *Fuzzy BRK-ideal of BRK-algebra*, JP Journal of algebra, Number theory & appl, **36** (3) (2015), 231–240.
- [2] D. H. FOSTER: Fuzzy topological group, J. Math. Anal. Appl., 67 (1979), 549--564.
- [3] Q. P. HU AND X. LI: On BCH-algebras, Mathematics Seminar Notes, 11 (1983), 313– 320.
- [4] Y. IMAI AND K. ISEKI: On axiom systems of propositional calculi., XIV Proceedings of the Japan Academy, **42** (1966), 19–22.
- [5] Y. B. JUN, E. H. ROH, AND H. S. KIM: On *BH*-algebras, Scientiae Mathematicae Japonica, **1** (3) (1998), 347–354.
- [6] C. B. KIM AND H. S. KIM: On BG-algebras, Demonstratio Mathematica, 41 (3) (2008), 497–505.
- [7] C. B. KIM AND H. S. KIM: On BM-algebras, Scientiae Mathematicae Japonicae, 63 (3) (2006), 421–427.
- [8] J. NEGGERS, S. S. AHN, AND H. S. KIM: On Q-algebras, International Journal of Mathematics and Mathematical Sciences, 27 (12) (2001), 749–757.
- [9] J. NEGGERS AND H. S. KIM: On B-algebras, Mathematica Vensik, 54 (2002), 21–29.
- [10] RAVI KUMAR BANDARU: *On BRK-algebras*, International Journal of Mathematics and Mathematical Sciences, (2012), 1–12.
- [11] A. ROSENFELD: Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512--517.
- [12] S. SIVAKUMAR, S. KOUSALYA, R. VIKRAMA PRASAD AND A. VADIVEL: *Topological structures on BRK-algebras*, Journal of Engineering Sciences, **10** (11) (2019), 459–471.
- [13] A.WALENDZIAK: On BF-algebras, Mathematica Slovaca, 57 (2) (2007), 119–128.
- [14] L. A. ZADEH: Fuzzy sets, Inform. Control, 8 (1965), 338–353.

DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE, CHIDAMBARAM, TAMIL NADU - 608 102, INDIA.

Email address: ssk.2012@yahoo.co.in

DEPARTMENT OF MATHEMATICS, VIDYAA VIKAS COLLEGE OF ENGINEERING AND TECHNOLOGY, TIRUCHENGODE, TAMIL NADU - 637 214, INDIA.

Email address: kousalyavaasan@gmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KARUR - 639 005; DEPARTMENT OF MATHEMATICS, ANNAMALAI UNIVERSITY, ANNAMALAI NA-GAR - 608 002, INDIA.

Email address: avmaths@gmail.com