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ON FUZZY TOPOLOGICAL BRK-SUBALGEBRAS

S. SIVAKUMAR, S. KOUSALYA, AND A. VADIVEL1

ABSTRACT. In this paper, fuzzy topologicalBRK-subalgebras of aBRK-algebras
is introduced. Also, fuzzy topological BRK-ideals in BRK-algebras is also in-
troduced and discussed some of their properties.

1. INTRODUCTION

Imai and Iseki [4] subjected two classes of abstract algebras: BCK-algebras
and BCI-algebras in the year of 1996. In 1983, the notion of a BCH-algebra
was introduced by Hu and Li [3], which is a generalization of BCK and BCI-
algebras. In 2002, a new notion B-algebra was introduced by Neggers and
Kim [9]. Also aBF -algebra andBG-algebra was introduced by Walendziak [13]
in 2007 and C. B. Kim and H. S. Kim [6], which is a generalization of B-
algebra. The concept of a fuzzy set was introduced in [14], provides a gen-
eral topology called fuzzy topological spaces. The structure of a fuzzy topo-
logical spaces by D. H. Foster [2] combined with a fuzzy group. A. Rosen-
feld [11] has formulate the elements of a theory of fuzzy topological groups.
In 2012, R. K. Bandaru [10] introduced BRK-algebra, which is a generalization
of BCK/BCI/BCH/Q/QS/BM -algebras [5,7,8]. In [1], El-Gendy introduced
the notion of fuzzy BRK-ideal of BRK-algebra. S. Sivakumar et al. intro-
duced a topology on BRK-algebra [12] and also studied several concepts. In
the present paper, fτBRK SA is introduced in a BRK-algebras.
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2. PRELIMINARIES

Definition 2.1. [10] A BRK-algebra (briefly, BRK Alg) (I, ?, 0) is a non-empty
set I with a constant 0 and a binary operation ? satisfying the following axioms:

(BRK1) i1 ? 0 = i1,

(BRK2) (i1 ? i2) ? i1 = 0 ? i2

for any i1, i2 ∈ I. In a BRK Alg I, ≤ a partially ordered relation can be defined
by i1 ≤ i2 iff i1 ? i2 = 0.

Definition 2.2. [10] Let I be a BRK Alg and a ∈ I. Define a right map Ra : I →
I by Ra(i) = i ? a ∀ i ∈ I.

Definition 2.3. [12] Let (I, ?, 0) be a BRK Alg and τ a topology on I. Then
I = (I, ?, 0, τ) is called a topological BRK Alg (briefly, τBRK Alg), if “ ? ” is
continuous or equivalently, for any m,n ∈ X and ∀ O open set of m ? n, ∃ two
open sets M&N respectively, such that M ?N is a subset of O.

Definition 2.4. [12] Let a non-empty subsetM of a τBRK Alg I, thenM is called
τBRK-subalgebra (briefly, τBRK sub Alg) of I if

i1 ? i2 ∈M ∀ i1, i2 ∈M.

Definition 2.5. [12] Let I be a τBRK Alg and D be a subset of I, then D is called
a τBRK-ideal (briefly, τBRK I) of I, if for any i11, i22 ∈ I:

(i) 0 ∈ D,
(ii) 0 ? (i11 ? i22) ∈ D and 0 ? i22 ∈ D imply i11, i22 ∈ I.

Definition 2.6. [1] Let I be a set. A function µI : I → [0, 1] where µI a fuzzy set
in I.

Definition 2.7. [2] A fuzzy topology (briefly, ft) on a set I is a family τ of fuzzy
subsets in I satisfies

(i) ∀ c ∈ [0, 1], Kc ∈ τ , where Kc have constant membership functions with
the value c,

(ii) If K,L ∈ τ , then K ∩ L ∈ τ ,
(iii) If Kj ∈ τ ∀ j ∈ J , then

⋃
j∈J

Kj ∈ τ .

The pair (I, τ) is called a fuzzy topological space (briefly, fts) and members of τ
are fuzzy open (briefly, τfo) subsets.
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Definition 2.8. [2] Let M be a fuzzy subset in I and τ a ft on I. Then the induced
ft on M is the family of fuzzy subsets of M which are the intersection with M of
τfo subsets in I. The induced ft is denoted by τM and the pair (M, τM) is called a
fuzzy subspace of (I, τ).

3. FUZZY TOPOLOGICAL BRK -SUBALGEBRAS

Definition 3.1. The pair (I, τ) is called a fts, then it satisfies a BRK Alg prop-
erties in (I, ?, 0, τ) it is called a fuzzy BRK topological spaces (briefly, fBRKts)
and members of τ are BRK-open fuzzy (briefly, BRK of) sets.

Definition 3.2. A fuzzy subset K in a BRK Alg, (I, ?, 0) with membership func-
tion µK is called a fuzzy BRK-subalgebra (briefly, fBRK SA) of I if

(∀i1, i2 ∈ I)[µK(0 ? (i1 ? i2)) ≥ min{µK(0 ? i1), µK(0 ? i2)}].

Example 1. Let (I = {0, aa1 , aa2 , aa3}, ?, 0) be a BRK Alg defined by

? 0 a1 a2 a3

0 0 0 a2 a2

a1 a1 0 a2 a2

a2 a2 a2 0 0

a3 a3 a3 a1 0

A fuzzy subset K in I defined by µK(a3) = 0.4 and µK(ax) = 0.8 for all ax 6= a3 is
a fBRK SA of I.

Definition 3.3. Let (I, τ) and (J, τ ′) be two fts’s. A mapping ψ of (I, τ) into
(J, τ ′) is fuzzy BRK continuous (briefly, fBRK Cts) if for each fos U in τ ′, the
inverse image ψ−1(U) is fBRKo in τ . Conversely, ψ is fuzzy BRK open (briefly,
fBRKO) if for each fos V in τ , the image ψ(V ) is fBRKo in τ ′.

Definition 3.4. Let (A, τA) and (B, τ ′B) be fuzzy subspaces of fts’s (I, τ) and (J, τ ′)

respectively and let a map ψ : (I, τ) → (J, τ ′). Then a mapping ψ of (A, τA) into
(B, τ ′B) if ψ(A) ⊂ B. Furthermore ψ is relatively fuzzy BRK continuous (briefly,
rfBRK Cts) if for each fos V ′ in τ ′B, the intersection ψ−1(V ′) ∩ A is fBRKo in
τA. Conversely, ψ is relatively fuzzy BRK open (briefly, rfBRKO) if for each fos
U ′ in τA, the image ψ(U ′) is fBRKo in τ ′B.
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Proposition 3.1. Let (A, τA), (B, τ
′
B) be fuzzy subspaces of fBRKts’s I and J

respectively. Let ψ be a fBRK Cts mapping of (I, τ) into (J, τ ′) such that ψ(A) ⊂
B. Then ψ is a rfBRK Cts mapping of (A, τA) into (B, τ ′B).

Proposition 3.2. Let ψ be a homomorphism of a BRK Alg’s I into J and S a
fBRK SA of J with membership function µS. Then the inverse image ψ−1(S) of
S is a fBRK SA of I.

Proof. Let i1, i2 ∈ I. Then

µψ−1(S)(0 ? (i1 ? i2)) = µS(ψ(0 ? (i1 ? i2))) = µS(ψ(0 ? i1)ψ(0 ? i2))

≥ min{µS(ψ(0 ? i1)), µS(ψ(0 ? i2))}

= min{µψ−1(S)(0 ? i1), µψ−1(S)(0 ? i2)}.

This completes the proof. �

Definition 3.5. A fuzzy subset K in a BRK Alg I with µK is said to be fuzzy
BRK-sup property (briefly, fBRK SP ) if for any subset P ⊂ I, there exists
p0 ∈ P such that

(3.1) µK(0 ? p0) = sup
p∈P

µK(0 ? p).

Proposition 3.3. Let ψ be a homomorphism of a BRK Alg’s I onto J and let S
be a fBRK SA of I that has the fBRK SP . Then the image ψ(K) of K is a
fBRK SA of J .

Proof. For j1, j2 ∈ J , let x0 ∈ ψ−1(j1); y0 ∈ ψ−1(j2) such that

µK(0 ? x0) = sup
t∈ψ−1(j1)

µK(0 ? t),

µK(0 ? y0) = sup
t∈ψ−1(j2)

µK(0 ? t).

Then, by µψ(0 ? K),

µψ(K)(0 ? (j1 ? j2)) = sup t ∈ ψ−1(j1j2)µK(0 ? t) ≥ µK(0 ? (x0 ? y0))

≥ min{µK(0 ? x0), µK(0 ? y0)}

= min{ sup
t∈ψ−1(j1)

µK(0 ? t), sup
t∈ψ−1(j2)

µK(0 ? t)}

= min{µψ(K)(0 ? j1), µψ(K)(0 ? j2)},

ending the proof. �
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Definition 3.6. Let I be a BRK Alg and τ a ft on I. Let S be a fBRK SA of
I with induced topology τS. Then S is called a fuzzy topological BRK-subalgebra
(briefly, fτBRK SA) of I if ∀ a ∈ I the mapping Ra : (0 ? i) → (i ? a) of
(S, τS)→ (S, τS) is rfBRK Cts.

Theorem 3.1. Let I, J be a BRK Alg’s and a homomorphism ψ : I → J . let τ
and τ ′ be ft’s on I & J respectively, such that τ = ψ−1(τ ′). Let S be a fτBRK SA

of J with µS. Then ψ−1(S) is a fτBRK SA of I with µψ−1(S).

Proof. To show that, ∀ a ∈ I, the mapping

(3.2) Ra : (0 ? i)→ (i ? a) of (ψ−1(S), τψ−1(S))→ (ψ−1(S), Tψ−1(S))

is rfBRK Cts. Let U0 be an fBRKo set in τψ−1(S) on ψ−1(S). Since ψ is a
fBRK Cts mapping of (I, τ) into (J, τ ′), it follows from Proposition 3.1 that ψ
is a rfBRK Cts mapping of (ψ−1(S), τψ−1(S)) into (S, τ ′S).

Note that ∃ fos V0 ∈ τ ′S 3 ψ−1(V0) = U0. The membership function of R−1a (U0)

is given by

µRa
−1(U0)(0 ? i) = µU0(Ra(0 ? i)) = µU0(i ? a) = µψ−1(V0)(i ? a)

= µV0(ψ(i ? a)) = µV0(ψ(0 ? i)ψ(0 ? a)).
(3.3)

As S is a fτBRK SA of J , the mapping

(3.4) Rb : (0 ? j)→ (j ? b) of (S, τ ′S)→ (S, τ ′S)

is rfBRK Cts for each b ∈ J . Hence

µRa
−1(U0)(0 ? i) = µV0(ψ(0 ? i)ψ(0 ? Ra)) = µV0(ψ(0 ? Ra)(ψ(0 ? i)))

= µψ(0?Ra)−1(V0)(ψ(0 ? i)) = µψ−1(ψ(Ra)−1(V0))(0 ? i),

which implies that R−1a (U0) = ψ−1(ψ(a)−1r (V0)) so that

(3.5) R−1a (U0) ∩ ψ−1(S) = ψ−1(ψ(Ra)
−1(V0)) ∩ ψ−1(S)

is open in the induced ft on ψ−1(S). The proof is complete. �

We say that µS of a fBRK SA S of a BRK Alg I is ψ-invariant [11] if
∀ i1, i2 ∈ I, ψ(i1) = ψ(i2) implies µS(0 ? i1) = µS(0 ? i2). Clearly, ψ(S) of S is a
homomorphic image then a fBRK SA.
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Theorem 3.2. Let I, J be a BRK Alg’s and a homomorphism ψ of I onto J , let τ
and τ ′ be a ft’s on I & J 3 ψ(τ) = τ ′. Let S be a fτBRK SA of I. If µS of S is
ψ-invariant, then ψ(S) is a fτBRK SA of J .

Proof. It is sufficient that,

(3.6) Rb : (0 ? j)→ (j ? b) of (ψ(S), τ ′ψ(S))→ (ψ(S), τ ′ψ(S))

is rfBRK Cts for each b ∈ J . Note that ψ is rfBRKO for if U0
′ ∈ τS, there

exists U0 ∈ τ 3 U0
′ = U0 ∩ S and by the ψ-invariance of µS,

(3.7) ψ(U0
′) = ψ(U0) ∩ ψ(S) ∈ τ ′ψ(S).

Let V0′ be a fos in τ ′ψ(S). Since ψ is onto, ∀ b ∈ J∃ a ∈ I such that b = ψ(a).
Hence

µψ−1(R−1
b (V0

′))(0 ? i) = µψ−1(ψ(Ra)−1(V0
′))(0 ? i) = µψ(Ra)−1(V0

′)(ψ(0 ? i))

= µ′V0(ψ(0 ? Ra)(ψ(0 ? i))) = µ′V0(ψ(0 ? i)ψ(0 ? Ra))

= µ′V0(ψ(0 ? (i ? Ra))) = µψ−1(V0
′)(0 ? (i ? Ra))

= µψ−1(V0
′)(Ra ? (0 ? i)) = µR−1

a (ψ−1(V0
′))(0 ? i),

which implies that ψ−1(R−1b (V0
′)) = R−1a (ψ−1(V0

′)).
By hypothesis, Ra : (0 ? i) → (0 ? (i ? a)) is a rfBRK Cts mapping (S, τS) →

(S, τS) and ψ is a rfBRK Cts mapping (S, τS)→ (ψ(S), τ ′ψ(S)). Hence

(3.8) ψ−1(R−1b (V0
′)) ∩ T = R−1a (ψ−1(V0

′)) ∩ S

is open in τS. Since ψ is rfBRKO,

(3.9) ψ(ψ−1(R−1b (V0
′)) ∩ S) = R−1b (V0

′) ∩ ψ(S)

is fBRKo in τ ′ψ(S). The proof is complete. �

4. FUZZY TOPOLOGICAL BRK -IDEALS

Definition 4.1. A fuzzy subsetK in I with µK is called a fuzzy BRK-ideal (briefly,
fBRKI) of I if

(i) (∀i1 ∈ I), [µK(0 ? 0) ≥ µK(0 ? i1)],
(ii) (∀i1, i2 ∈ I), [µK(0 ? i1) ≥ min{µK(0 ? (i1 ? i2)), (µK(0 ? i2))}].

Proposition 4.1. Let ψ be a homomorphism of a BRK Alg’s I into J and L is a
fBRKI of J with µL. Then the inverse image ψ−1(L) of L is a fBRKI of I.
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Proof. Since ψ is a homomorphism of (I, ?, 0) into (J, ?′, 0′), then ψ(0) = 0′. By
assumption,

(4.1) µL(ψ(0 ? 0)) = µL(0 ? 0
′) ≥ µL(0 ? j), ∀ j ∈ J.

In particular, µL(ψ(0 ? 0)) ≥ µL(ψ(0 ? i)) ∀ i ∈ I. Thus

(4.2) µψ−1(L)(0 ? 0) ≥ µψ−1(L)(0 ? i),

which proves (i).
Now, let i1, i2 ∈ I. Then by µL,

µψ−1(L)(0 ? i1) = µL(ψ(0 ? (i1 ? i2))) = µL(ψ(0 ? (i1 ? i2))ψ(0 ? i2))

≥ min{µL(0 ? (i1 ? i2)), µL(0 ? i2)}

which proves (ii). The proof is complete. �

Definition 4.2. Let (I, ?, 0, τ) be a τBRK Alg. A fuzzy set µI in I is called an
fuzzy topological BRK-ideal (briefly, fτBRKI) of I if

(4.3) (BRKI1) µI(0) ≥ µI(i0),

(4.4) (BRKI2) µI(0 ? i1) ≥ min{µI(0 ? (i1 ? i2)), µI(0 ? i2)}, ∀ i1, i2 ∈ I.

Since any fBRK I is a fBRK SA, then a fτBRK I is a fτBRK SA and
from Theorem 3.1 and Proposition 4.1, we obtain a corollary 4.1.

Corollary 4.1. Let I, J be a BRK Alg’s and a homomorphism ψ : I → J , let τ
and τ ′ be ft’s on I & J respectively, such that τ = ψ−1(τ ′). Let H be a fτBRKI
of J with µH . Then ψ−1(H) is a fτBRKI of I with µψ−1(H).

If µH of a fBRKI H of a BRK Alg I is ψ-invariant, then ψ(H) of H is a
homomorphic image of a fBRKI. Thus Theorem 3.2 follows a Corollary 4.2.

Corollary 4.2. Given I, J be a BRK Alg’s and a homomorphism ψ of I onto J ,
let τ and τ ′ be a ft’s on I and J such that ψ(τ) = τ ′. Let H be a fτBRKI of I. If
µH of H is ψ-invariant, then ψ(H) is a fτBRKI of J .
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