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K-ODD SEQUENTIAL HARMONIOUS LABELING OF DOUBLE
M -TRIANGULAR SNAKES

P. SENTHIL! AND M. GANESHKUMAR

ABSTRACT. Harmonious graphs introduced by Graham and sloane [1] and singh
and Varkey [3] presented the odd sequential graphs. The main objective of this
paper we have shown that the double m triangular snakes, and alternative dou-
ble m triangular snakes are odd sequential harmonious graph for every m.

1. INTRODUCTION

All graphs considered as finite, simple and undirected during this paper. A
graph with p— vertices and ¢— edges are referred to as a (p, ¢q) graph. Indicate
the set of vertex and edge symbols V' (G) and E(G). An arrangement of whole
numbers at the vertices or edges or both according to unique conditions is un-
derstood as a graph labeling. Graph labeling presented in late 1960’s. Graph
labeling is in many applications like coding theory. X — beam Crystallography,
radar, space science, circuit structure, correspondence organize tending to, in-
formation base administration.

Definition 1.1 (k— Odd sequential harmonious labeling (kK — OSHL):). A
graph G is supposed to be k— odd sequential harmonious labeling if there exist a
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one - one function h : V(G) — {k—1,k,k+1, ...,k + 2q — 1} specified the actuated

mapping h* : E(G) — {2k — 1,2k + 1,2k + 3, ..., 2k + 2q — 3} defined by

h(u) +h(v) +1, if h(u)+ h(v) iseven

h* (uv) =
h(u) + h(v), if h(u)+ h(v) isodd

are distinct.

Definition 1.2 (k— Odd sequential harmonious graph (k — OSHG)). A graph
is called k— odd sequential harmonious graph if it has k— odd sequential harmo-
nious labeling.

2. MAIN RESULTS

Definition 2.1 (Double m triangular snake (2m7S,)). A double m triangular
snake comprises of m triangular snakes that have path, in like manner; i.e., a
(2mT'S,) is gotten from a path vy, vs,...,v, by joining v; and v;,; to a different
vertex u{forz’ =1,2,....n—1,57 = 1,2,...,m to a different vertex w{fori =
1,2,...,n—1,7 = 1,2,...,m. Specifically m = 1 is named double triangular
snake.

Theorem 2.1. Double m - triangular snake is an OSHG for every m.
Proof. Let the vertices of 2m(7'S,,) is:
{vi:1<i<n}U{u ,wil1<i<n—1,<j<m}
Then the edges labels of 2m/(7'S,,) are:
{1 <i<n— 1 U{ouf;1<i<n—1,<j<m}
U{viﬂwf;l <i<n-1,<j gm}U{viHug;l <i1<n—-1,<j<m}
U{vw;1<i<n—-1,1<j<m}

and are denoted as the following figure:
The vertices are first labelled as follows:
Leth:V = {k—1,kk+1,k+2,...,k+2q— 1} be defined by
h(v;) =i+k—-21<i<n
hul) =8 —2n+3i+k—8j+1)i<j<m1<i<n-—1

h(w!) = (85 —6)n+3i+k— (8 —3)
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FIGURE 1. 2m(TS,)

At that point the incited edge labels are:
h*(viviﬂ) :22+2]€—3,1 SZSTL—]_

he(vaul) = (8 —2)n+4i + 2k — (85 +3)
W (viul) = (8§ — 2)n+4i + 2k — (85 + 1
(U+1%) (87 = 2)n + 4i (8 )1§j§m,1§i§n—1
h*(vw!) = (8 —6)n+4i+ 2k — (8 — 1)
\h*(Uleﬁ = (8§ — 6)n +4i+ 2k — (85 — 3),

Obviously, we see that the edge labels are distinct. Along these lines, the graph
(2mTS,)isa (k—OSHL), for every m. Thus the graph 2m(7'S,,) isan k—OSHG,
for every m. O

Example 1.
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FIGURE 2. 1 — OSHL
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Example 2.

Theorem 2.2. Alternate double triangular snake A(2mT'S,,) starting with an edge
is an k— odd sequential harmonious graph for every m.

Proof. There are two other cases.

Case(i): n— is even.

Let the vertices of A(2mT'S,,) is

n—2

1<i<
5 <j<m},

{v;1<i<n}U{u,wl;l1<i<

and the edges of A(2mT'S,) is
{vivig;1 <i<n-—1}

. -2
U{vziui;léié%,léjém}

. -2
U{®2¢+1U§;1§i§nT,1§j§m}

| )
U{U2iw§;1§i§n771§j§m}

; n—2
U {vgi_lwf; 1 S 1 S B

1<) <m},

which are denoted as the following figure.
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FIGURE 3. A(2m(T'S,))

The vertices are first labelled as follows. Let h: V — {k — 1,k k+1,... k+

2q — 1} be defined by

h(v,)) =i+ k—2,1<i<n,

h(ul) =4jn+2i+k— (85 +1), o on—2 ,
) 1<:< A <j<m
h(w!) = (45 —2)n+2i+k— (85 — 3), 2
At that point the prompted edge labels are
h*(vivi+1):2i+2k—3, 1 SZSTZ—L
(B (vgiw;) = (45 — 2)n + 4i + 2k — (8§ — 1),
W (vyw]) = (4) — 2)n +4i + 2k — (85 — 3 -
(U2+}wz) (4 —2)n+ 4i + (85 )1§i§n 2,1§j§m
h*(vgud) = 4jn + 4i 4+ 2k — (8§ + 3) 2
P (vaipau]) = 4gn+ 40+ 2k — (8 + 1)
Case (ii): n— is odd.
Let the vertices of A(2mT'S,,) are
: o . _n—1 :
{vi;1 <i<n}U{u,w;l<i< 1< j<m}
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and the edges of A(2mT'S,,) are
, —1
{vivig;1 < i <n}U{vyul;1 <i < nT,l <j<m}
U {v2i+1U{; 1<j<m}
A —1
Uil Si< o 1< j < m}
: —1
U {vgipwl;1<i< "T,1 <j<mb.
which are denoted in figure:
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The vertices are first labeled as follows:
h(v,))=i+k—2, 1<i<n,

h(ul) =djn+2i+k— (45 +3), _n-1
hw!) =4j—2n+2i+k—(4j+1), 2

The edge labels then are,

h*<?)ﬂ]i+1):2i—1, 1 SZSTL—L

h* (ve;u;) =4jn+ 4i+ 2k — (45 + 5),
h*(vgigrl) = 4jn + 4i + 2k — (45 + 3), —
(U2+1%) Jn + 4+ (45 +3) 1<i<™ 2,1<j<m
h*(vw!) = (45 — 2)n 4 4i + 2k — (45 + 3), 2
B (vgsw!) = (45 — 2)n + 4i + 2k — (45 + 1),
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In both case, we see that the edge labels are distinct. So, h— admits k— odd
sequential harmonious labeling. Hence the alternating double triangular graph
A(2mTS,) is k — OSHG for every m. O

Example 3. n— is even.
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FIGURE4. 1 — OSHL

Example 4.
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