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FIXED POINT THEOREMS IN PARAMETRIC METRIC SPACE FOR
CONTRACTION MAPPINGS

RIA SHARMA1 AND ARUN KUMAR GARG

ABSTRACT. Parametric Metric Space (P.M.S) is a well known generalization of
Metric Space (MS) which was introduced and studied by Hussian (a new
approach to M.S.) in 2014. In the present paper, we extended fixed point
theorems (F.P.T) of Zamfirescu and Hardy-Rogers based on injective mapping
to Parametric Metric Space (P.M.S) using contraction conditions. Moreover,
we presented an examples to validate our result.

1. GENERAL INTRODUCTION AND PRELIMINARIES

Real analysis is the most important branch of mathematics. Among several
branches of real analysis, functional analysis is the most important part of real
analysis. Functional analysis is divided into two parts: linear and non-linear.
F.P.T is an important part of non-linear functional analysis since 1960. F.P.T
has various applications in field of pure and applied mathematics as well as in
physical, economic, differential equation, integral equation and life sciences.It
has emerged as one of the major links between abstracts mathematics and its
applications. It is used in differential equations, integral theory, artificial
intelligence, computer science, decision making, medical diagnosis, neural
network, social science and many other related areas. F.P.T deals with the
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classical approach to the exact solution and to check the stability of the system.
F.P.T has fascinated lots of researchers since 1922, with the celebration of
Banach (Polish mathematician) contraction principle [23] which provided a
constructive method to find a fixed point of a mapping. Banach contraction
principal states: A mapping T : X → X defined on M.S (X, δ) is called
contraction if δ (Ta, Tb) ≤ kδ (a, b) ∀ a, b ∈ X 0 < k < 1. Since then this
theorem became an important tool for the development of nonlinear analysis.
Contraction conditions begins by studying Banach contraction principle which
are utilized in various F.P.T for some generalized M.S. Various F.P.T were
attained by expanding Banach contraction principal [2,3,16,19,21–23].

Kannan [15] proved that a mapping T : X → X defined on M.S (X, δ) is
called contraction mapping if δ (Ta, Tb) ≤ k [δ (a, Ta) + δ (b, T b)]∀ a, b ∈ X 0 <

k < 1/2 for operators that need not be continuous. Further, Chatterjea [3],
proved a F.P.T for discontinuous mapping, which is actually a kind of dual of
Kannan mapping. Some of the generalizations of M.S are cone metric spaces,
partial metric spaces, P.M.S, “parametric b-metric space”(P.B.M.S) etc. [1,6,10,
11,13,14,17,20,21] introducing and modifying the metric axioms.

Hussain et al. [12] studied and introduced the notion of P.M.S, and later on
gave generalized P.M.S and introduced P.B.M.S which is combination of M.S,
as well as, b-M.S [13]. In the present paper we proved fixed point theorems
on P.M.S for expansive mapping. We generalized the fixed point theorems of
Zamfirescu [32] and Hardy-Rogers [12] to their parametric versions in complete
metric space.

Definition 1.1. Let X be a non empty set and Tp : X ×X × (0,∞)→ (0,∞) be a
map on X such that ∀ a, b, c ∈ X and t > 0

(a) Tp (a, b, t) = 0 if and only if a = b

(b) Tp (a, b, t) = Tp (b, a, t)

(c) Tp (a, b, t) ≤ Tp (a, c, t) + Tp (c, b, t)

Then pair (X, δ) is called P.M.S.

Definition 1.2. Let X be a non empty set and (X, δ) be a P.M. S and let {ai} be a
sequence in X.

(a) If logi→∞ (ai, a, t) = 0 ⇒ logi→∞[ai = a], for all t > 0 then sequence
{ai}∞i=1 converses a ∈ X.
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(b) If logn→∞ (ai, aj, t) = 0 for all t > 0 then sequence {ai}∞i=1 is called
Cauchy sequence.

(c) If every Cauchy sequence is convergent, then P.M S (X, δ) is a complete
P.M.S.

(d) Let (X, δ) be a P.MS and Tp : X → X be a mapping, then we say T
is a continuous mapping in X, if for any sequence{ai}∞i=1 ∈ X such that
logi→∞ ai = x ⇒ logi→∞ Tpai = Tpa.

2. MAIN RESULT

Theorem 2.1. Let (X, δ) be a complete PMMS and Tp : X → X be an injective
mapping satisfying the condition

δ (Tpa, Tpb, t) ≤ α1δ(a, b, t) + α2δ (a, Tpa, t) + α3δ (b, Tpb, t) (2.1.1)

+α4δ (a, Tpb, t) + α5δ (b, Tpa, t)

∀t ∈ [0, 1);α1, α2, α3, α4, α5 > 0; a, b ∈ X&a 6= b have a fixed point if α1 + α2 +

α2 + 2α4 < 1 and moreover a unique point if α1 + α4 + αs < 1.

Proof. Let a0 ∈ X2. Define iterative sequence [ai]
∞
i=1 as follows: Tpai = ai+1 for

i = 1, 2, 3, . . .. If for some i, Tpai = ai, then ai is the fixed point. Otherwise
Tpai 6= ai, using inequality (2.1.1),

δ (ai+1, ai+2, t) = δ (Tpai, Tpai+1, t)

≤ α1δ (ai, ai+1, t) + α2δ (ai, Tpai, t) + α3δ (ai+1, Tpai+1, t)

+α4δ (ai, Tpai+1, t) + α5δ (ai+1, Tpai, t)

≤ α1δ (ai, ai+1, t) + α2δ (ai, ai+1, t) + α3δ (ai+1, ai+2, t)

+α4δ (ai, ai+2, t) + α5δ (ai+1, ai+1, t)

≤ α1δ (ai, ai+1, t) + α2δ (ai, ai+1, t) + α2δ (ai+1, ai+2, t)

+α4 [δ (ai, ai+1, t) + δ (ai+1, ai+2, t)]

(1− α3 − α4) δ (ai+1, ai+2, t) ≤ (α1 + α2 + α4) δ (ai, ai+1, t)

δ (ai+1, ai+2, t) ≤ (α1+α2+α4)
(1−α3−α4)

δ (ai, ai+1, t)

δ (ai+1, ai+2, t) ≤ kδ (ai, ai+1, t)

Here k = (a1+a2+a4)
(1−a3−a4) < 1⇒ α1 + α2 + α3 + 2a4 < 1.

Continuing iterations up to i times δ (ai+1, ai+2, t) ≤ kiδ (a0, a1, t) .

As we know if {ai}i→∞ be a sequence in P.MS(X, δ) such that δ (ai+1, ai+2, t) ≤
kiδ (a0, a, t), ∀t ∈ [0, 1), and t = 1, 2, 3, . . .. Then {ai}i+∞ is a Cauchy sequence in
(X, δ). Since (X, δ) is a complete P.M.S {ai}i→∞ converses.
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Let a+ ∈ X, then limn→∞xi → x∗. Again Tp is continuous, therefore
Tpa

∗ = Tp (limn→∞an) = limn→∞Tpai = a∗ ⇒ Tpa
∗ = a∗

which implies that Tp has a fixed point Tpa∗ = a∗ in X.
Now we will show that a4 is unique. For that suppose b∗ is another fixed point,

i.e., Tpb∗ = b∗. Therefore by inequality (2.1.1) we have
δ (Tpa

∗, Tpb
∗, t) ≤ α1δ (a

∗, b∗, t) + α2δ (a
∗Tpa

∗, t) + α3δ (b
∗, Tpb

∗, t)

+α4δ (a
∗, Tpb

∗, t) + α5δ (b
∗, Tpa

∗, t) ,

δ (a∗, b∗, t) ≤ α1δ (a
∗, b∗, t) + α2δ (a

∗, b∗, t) + α2δ (b
∗, b∗, t)

+α4δ (a
∗, b∗, t) + α5δ (b

∗, a∗, t)

δ (a∗, b∗, t) ≤ α1δ (a
∗, b∗, t) + α4δ (a

∗, b∗, t) + α5δ (a
∗, b∗, t)

δ (a∗, b∗, t) ≤ (α1 + α4 + α5) δ (a
∗, b∗, t)

(1− α1 − α4 − α5) δ (a
∗, b∗, t) ≤ 0,

implying a∗ = b∗. Since α1+α4+α5 < 1, we have that a∗ and b∗ are not different
point but are same.

Hence a4 is unique. �

Theorem 2.2. Let (X, Tp ) be a complete P.MS and Tp : X → X be an injective
mapping satisfying condition

(Tpa, Tpb, t) ≤ αmax

[
δ(a, b, t),

δ (a, τpa, t) + δ (b, τpb, t)

2
,
δ (a, τpb, t) + δ (b, τpa, t)

2

]
for all t ∈ [0, 1);α, β, γ > 0;x, y ∈ X and a 6= b. Then Tp has a fixed point if
α + β + γ < 1 and moreover a unique fixed point if α + γ < 1.

Proof. Let a0 ∈ X. Define iterative sequence {ai}∞i=1 as follows: Tpai = ai+1 for
i = 1, 2, 3, . . .. If for some i, Tpai = ai, then ai is the fixed point. Otherwise
Tpai 6= ai, and then

δ (ai+1, ai+2, t) = δ (Tpai, Tpai+1, t)

≤ αmax
{
δ (ai, ai+1, t) ,

δ(ai,Tpai,t)+δ(ai+1,Tpai+1,t)

2
, δ(ai,Tpai+1,t)+δ(ai+1,Tpai,t)

2

}
≤ αmax

{
δ (ai, ai+1, t) ,

δ(ai,ai+1,t)+δ(ai+1,ai+2,t)
2

, δ(ai,ai+2,t)+δ(ai+1,ai+1,t)
2

}
≤ αmax

{
δ (ai, ai+1, t) ,

δ(ai,ai+1,t)+δ(ai+1,ai+2,t)
2

, δ(ai,ai+1,t)+δ(ai+1,ai+2,t)}
2

}
which implies δ (ai+1, ai+2, t) ≤ αmax (ai, ai+1, t) .

Therefore, by successive iteration δ (ai+1, ai+2, t) ≤ αiδ (a0, a1, t) .
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As we know, if {ai}i→∞ is a sequence in P.MS(X, δ) such that
δ (ai+1, ai+2, t) ≤ αiδ (a0, a1, t) for all t ∈ [0, 1) and i = 1, 2, 3, . . ., then {ai}i→∞ is
a Cauchy sequence in (X, δ).

Since (X, δ) is a complete P1M. S {ai}i→∞ converges.
Let a∗ ∈ X, then a→ a∗. Again Tp is continuous, therefore

Tpa
∗ = Tp (limn→∞ai) = lim

n→∞
Tpai = a∗ ⇒ Tpa

∗ = a∗.

and further, Tp has a fixed point Tpa∗ = a∗ in X.
Now, we will show that a∗ is unique. For that suppose y∗ is another fixed point

therefore Tpy∗ = y∗. Therefore by the condition of the theorem we have
δ (Tpa

∗, Tpb
∗, t)

≤ αmax
{
δ (a∗, b∗, t) , δ(a

∗,Tpa∗,t)+δ(b∗,Tpb∗,t)
2

, δ(a
∗,Tpb∗,t)+δ(b∗,Tpa∗,t)

2

}
δ (Tpa

∗, Tpb
∗, t) ≤ αmax

{
δ (a∗, b∗, t) , δ(a

∗,a∗,t)+δ(b∗,b∗,t)
2

, δ(a
∗,b∗,t)+δ(b∗,a∗,t)

2

}
δ (Tpa

∗, Tpb
∗, t) ≤ αmax {δ (a∗, b∗, t)}

δ (a∗, b∗, t) ≤ αδ (a∗, b∗, t) ,

implying (1 − α)δ (a∗, b∗, t) ≤ 0 and ⇒ (1 − α)δ (a∗, b∗, t) ≤ 0, i.e., δ (a∗, b∗, t) =
0 since α > 1⇒ a∗ = b∗.

Hence Tp has a unique point. �

Example 1. Let (X, δ) be a complete P.M.S, where Tp : R+ → R+ is a mapping
defined as δ(a, b, t) = t|a− b|q such that an = 1 + 1

n
and bn = 1 + 2

n
. Therefore

δ (an, bn, t) = t |an − bn|q = t
∣∣(1 + 1

n

)
−
(
1 + 2

n

)∣∣q
= t
∣∣ 1
n
− 2

n

∣∣q = t
∣∣− 1

n

∣∣q = t
(
1
n

)q
= t 1

nq ,
logn→∞ δ (an, bn, t) = logn→∞ t

1
nq = t logn→∞

1
n9

= 0 for t > 0

implying logn→∞ δ (an, bn, t)→ 0 as both an = 1 + 1
n

and bn = 1 + 2
n

tends to 1 as
n→∞.

Hence 1 is the fixed point. It satisfies all the conditions of complete parametric
metric space for t > 0 and Theorems 2.1 and 2.2.

3. CONCLUSION

The aim of this paper is to verify that existing theorems in complete metric
space are true or not for parametric metric space if a parameter t > 0 is added
under the contraction conditions.
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