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ABSTRACT. The current paper,logically based on Gini Simpson index of diver-
sity, in the setting of fuzzy set theory we introduced the measure of fuzzy en-
tropy. The fuzzy entropy axiomatic requirements are satisfied in a mathematical
view point for the new fuzzy entropy.To show the successfulness of the proposed
entropy we compare it with the some existing entropies.

1. INTRODUCTION

The idea of the FS created by Zadeh [33] to demonstrate and process uncer-
tain data in a much successful manner. By allocating the membership degree
between 0 and 1 to the elements of a set, the FS can depict the state between
"belong to" and " not belong to". So, numerous types of uncertainties that can’t
be delineated by classical sets can be portrayed by FS. Initially, FSs has been
applied in numerous territories, for example, decision-making,automatic con-
trol, pattern recognition and so on. The Zadeh [34] was the first to propose
the entropy of FS to portray the fuzziness. De Luca and Termini [7] extend the
Zadeh’s work by proposing a probabilistic entropy measures for FSs.Yager [32]
characterized an entropy proportion of a FS in regards in absence of capability
between FS and its complement. They proposed some axiomatic characteristics
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to measure the fuzzy entropy by which we can define the fuzzy entropy. Yager’s
idea was reached out by Higashi and klir [12] to a progressively broad sort of
fuzzy complementation. As a result of its importance in delineating a fuzzy set,
the entropy measure of FS has been creating to a functioning subject in FS the-
ory. In the fuzzy environment,many authors have described various theories on
entropy measures, such as the papers (Kosko [19], Hwang and Yung [11], Pal
and Pal [24], Verma and Sharma [28], Joshi and Kumar [14, 16, 20], Hooda
[9], Li and Lu [21], Bhandari and Pal [5], Pal and Pal [25]).

The proposed measure is Gini Simpson’s index which is neither additive nor
non additive entropy measure from probabilistic setting to fuzzy set theory.Some
researcher studied the generalized entropy [5,14,16,17,20,31,23].

The major targets of bringing out this theory are: (1) To introduce a paramet-
ric fuzzy information measure based on the Gini Simpson diversity (2) Compar-
ative analysis is given with existing entropies in the literature based on linguistic
variables.

The following paper is structured as Section[2] consists of some definitions
and basic concept related to FSs. In Section[3], we proposed and proved the
basic properties of new fuzzy information measure.Section[4] with the help of
examples we will analyze the comparison of proposed measure with some ex-
isting fuzzy entropy measures. In the last section[5], the paper is summarised
with “Conclusions” in Section 5.

Throughout this paper, it is assumed that k ∈ I+ (set of positive integers) and
base of all logarithms are 2 Corresponding to Shannon entropy, De Luca and
Termini [7] defined a fuzzy entropy for a fuzzy set K as :

(1.1) J(K) = −L
k∑
i=1

[λk (ri) log (λK (ri)) + (1− λK (ri) log (1− λK (ri))] .

For some constant L = 1/k Several generalized fuzzy entropies were defined by
authors e.g., In 1993, Bhandari and Pal suggested new fuzzy entropy measures
based on the Ren [26] as follows:

(1.2) Jxya(K) =
1

1− α

k∑
i=1

log [λx (rl)
a + (1− λk (rl))

a] ,

where α > 0( 6= 1).
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In section [3], we proposed a new entropy of FSs. To prove the effectiveness
of the proposed entropy we made some comparison with the existing one.

2. A NEW FUZZY INFORMATION MEASURE

For this section we briefly review the theoretical concept of information the-
ory and then introduce a generalization of Gini- Simpson entropy, along with
studying with their properties.

Let

Γk =

{
S = (s1, s2, . . . , sk) : si ≥ 0;

k∑
i=1

si = 1

}
, k ≥ 2

be set of k -complete probability distributions. For any probability distributions
S = (s1, s2, . . . , sk) ∈ Γk, Shannon [27] defined an entropy as:

(2.1) Jsr(S) = −
k∑
i=1

(si) log (si) .

Tsallis [29] introduced a generalized form of Shannon entropy, Tsallis entropy
is defined by

(2.2) Jαπ (S) =
1

α− 1

[
1−

k∑
i=1

saj

]
;α ∈ (0, 1) ∪ (1,∞),

since, lima→1H
a
πs(S) = Hst(S). In particular, Tsallis [29] and Ren entropy [26]

having a close relationship between them as follows:

(2.3) J∞(S) =
1

α− 1
logD (1− (1− α)Jα(S)) =

1

1− α
logD

k∑
i=1

sαi ,

where JaRa(S) is the Renyi entropy. The major difference between them is, the
Renyi [26] and Shannon [27] entropy are additive whereas the Tsallis entropy
[29] is non-additive, i.e.,

(2.4) JωTS(S, T ) = J∞TS(S) + J∞TS(T ) + (1− α)Jαπs(S)JαTS(T ),

where S, T ∈ Γk.
However, in the literature of information theory, there exists various general-

izations of Shannon’s entropy [27], we introduced a new information measure
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J∞π2 : ΓL → <+( set of positive real numbers) ; k ≥ 2 as follows:

(2.5) J∞∼rw2 (S) =
k∑
r=1

(√
si − s2i

)
α ∈ (0, 1) ∪ (1,∞),

which is known as a generalization of Gini Simpson index of diversity.

2.1. Properties of proposed entropy.

Theorem 2.1. The parametric entropy Jmeren
2 (S), S ∈ Γk, satisfied below said

properties:

1) Symmetry: Jmin
2 (s1, s2, . . . , sk) is a symmetric function of (s1, s2, . . . , sk).

2) Non-Negative: Jw−v2 (S) ≥ 0.
3) Expansible: Jmin

2 (s1, s2, . . . , sk, 0) = Jm,m2 (s1, s2, . . . , sk).
4) Decisive: Jnew2 (0, 1) = 0 = J∞−v2 (1, 0).
5) Maximility: Hnew

2 (s1, s2, . . . , sk) ≤ Hnew
2

(
1
k
, 1
k
, . . . , 1

k

)
.

6) Concavity: Jnew2 (tS1 + (1− t)S2) ≥ tJnew2 (S1) + (1− t)Jnew2 (S2).
7) Continuity: Jnew2 (s1, s2, . . . , sk) is continuous in the region si ≥ 0 for all

i = 1, 2, . . . , k.

Proof. The proof of the above theorem are trivial and omitted. �

Definition 2.1. Corresponding to (3.5), we proposed the following fuzzy informa-
tion measure:
(2.6)
Jnew2 (K) = 1

k

∑k
i=1

[
(λK (ri))

1/2 + (1− λL (ri))
1/2 − (λK (ri))

2 + (1− λK (ri))
2
]

We show that the new proposed fuzzy entropy measure satisfy all the entropy
properties which are given in the preceding theorem.

Theorem 2.2. The fuzzy entropy measure (2.6) satisfied four fuzzy entropy ax-
iomatic requirements.

Proof. For validity the measure defined by (2.6), we should fulfills the axiomatic
requirements (A1)− (A4).
A1 (Sharpness): From (2.5), we have
(2.7)
Jn+v2 (K) = 1

k

∑k
i=1

[
(λK (ri))

1/2 + (1− λK (ri))
1/2 − (λK (ri))

2 + (1− λK (ri))
2
]
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If Jnew2 (M) = 0 in (2.5), then

(2.8) (λK (ri))
1/2 + (1− λK (ri))

1/2 − (λK (ri))
2 + (1− λK (ri))

2 = 0,

for alli = 1, 2, . . . , k. Clearly (2.8) will be satisfied if λK (ri) = 0 or 1, for all
i = 1, 2, . . . , k.

Conversely, let K be a non FS, i.e., crisp set, then either λX (ri) = 0 or 1. This
implies that

(2.9) (λK (ri))
1/2 + (1− λK (ri))

1/2 − (λK (ri))
2 + (1− λK (ri))

2 = 0

for all i = 1, 2, . . . , k. Hence, Jnew2 (K) = 0 iff K is a crisp set , i.e., λK (ri) = 0 or
1 for all i = 1, 2, . . . , k.

A2 (Maximality): Differentiating (2.6) with respect to λK (ri) , we get

(2.10)

∂J
nn(
2 K

)
∂λK (ri)

=
1

k

[
1

2

{
λK (ri)

−1
2 − (1− λK (ri))

−1
2

}]
− [2 {2K (ri)− (1− λK (ri))}] .

Differentiating (2.13) with respect to λK (ri) , again, we get

(2.11)
∂2Jnmv2 (K)

∂λK (ri)
2 =

1

k

[(
−1

4

)(
λK (ri)

−3
2 +

(
(1− λK (ri))

−3
2

)]]
.

We can prove that ∂2Jnew2 (K)

∂λK(ri)
2 < 0. It is evident that

∂Jner
2 (K)

∂λK (ri)
= 0, when λK (ri) = 0.5.

This proves that Jn of (K)
2 is a concave function and has a global maximum at

λK (ri) = 0.5 . . . It proves that Jnew2 · · · (K) is maximum iff K is the most fuzzy
set ,i.e., λK (ri) = 0.5 for all ri.

This proves that Jner
2 (K) is maximum iff K is the most fuzzy set, i.e., λK (ri) =

0.5, for all ri.

A3 (Resolution): In(2.10), we have

∂Jmin
2 (K)

∂λK (ri)
> 0 in [0, 0.5),

∂Jn sw
2 (K)

∂λx (ri)
< 0 in (0.5, 1]

and ∂Jnm′2 (K)

∂λK(ri)
= 0 at λK (ri) = .5.
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Therefore, Jnew2 (K) is an increasing function of λK (ri) in [0,0.5) and decreas-
ing function of

λK (ri) in (0.5, 1].

Now, let K∗ be crisper than K. This implies

(2.12) 0 ≤ λK∗ (ri) ≤ λK (ri) < 0.5⇒ Jnm2 (K∗) ≤ Jnm
′′

2 (K)

and

(2.13) 0.5 < λK (ri) ≤ λK∗ (ri) ≤ 1⇒ Jn+m2 (K∗) ≤ Jnrv2 (K).

From (2.12) and (2.13), we get Jnew2

(
K∗

∗) ≤ Jnew2 (K), where K∗ is crisper than
K.

A4 (Symmetry): This is straightforward by the definition of Jnew
2 (K) and λK (ri) =

1− λK (ri). Hence, Jnew
2 (K) satisfies all properties in the axiomatic definition of

fuzzy measure. Therefore, Jnew
2 (K) is a fuzzy measure of FSs.

Now, we have a property of the proposed information measure. �

Theorem 2.3. If K,L ∈ FSs(R), then Jnew2 (K ∪ L) + Jnew
2 (K ∩ L) = Jnew

2 (K) +

Jnew
2 (L).

Proof. Let

(2.14) R1 = {r ∈ R | λK(r) ≥ λL(r)}

and

(2.15) R2 = {r ∈ R | λK(r) < λL(r)} ,

where λK(r) and λL(r) are the membership functions of K and L, respectively.
If r ∈ R1, then λK∪L(r) = max {λK(r), λL(r)} = λK(r) and

λK∼L(r) = min {λK(r), λL(r)} = λL(r).

If r ∈ R2, then λK∪L(r) = max {λK(r), λL(r)} = λL(r) and
λK∼L(r) = min {λK(r), λL(r)} = λK(r).

Now, consider

J logw
2 (K ∪ L) + J

log(K∩L)
2

= 1
k

[∑R
i=1

{
(λK (ri))

1
2 + (1− λL (ri))

1
2 − (λK (ri))

2 + (1− λK (ri))
2
}]

+
∑R

i=1

[{
(λL (ri))

1
2 + (1− λL (ri))

1
2 − (λL (ri))

2 + (1− λL (ri))
2
}]

.
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On simplifying, we get

Jnew2 (K ∪ L) + Jnew2 (K ∩ L) = Jnew2 (K) +Hnew
2 (L).

�

3. NUMERICAL EXAMPLES

In this part, to check the validity and the effectiveness of the new fuzzy mea-
sure Jnever

2 (K) we will compare it with the existing fuzzy measures which are
widely used for FSs with the help of some examples. Some of the accepted fuzzy
measures for FSs are proposed by:

Yager [32]:

JI1(K) = 1− dp (K,Kc)

n
1
p

Kosko [19]:

JKOS(K) =
dp (K,Kpear )

dp (K,Kfy)

Pal and Pal [25]:

JPa(K) =
1

k

k∑
i=1

[
λK (ri) e

1−iL(γi) + (1− λK (ri)) e
iK(τi)

]
Li and Liu [21]:

JLL(K) =
k∑
i=1

S (cr (ξP = ri))

Hwang and Yung [11]:

JHY (K) =
1

1− e−1
2

k∑
i=1

[(
1− e−λKc (ri)

)
I[λK(ri)≥ 1

2 ] +
(
1− e−λK(ri)

)
I[λK(ri)<

1
2 ]

]
.

Joshi and Satish [18]:

Jβα(K) =
α× β

k(α− β)

[
k∑
i=1

{
[λK (ri)

ρ + (1− λK (ri))
ρ)

1
β

− (λK (ri)
α + (1− λK (ri))

α)
1
α

}]

Example 1: Consider a FS K1 of R = {3, 4, 5, 6, 7}. The FS is defined as:

K1 = {(3, 0.1), (4, 0.3), (5, 0.4), (6, 0.9), (7, 1)}.
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Then the modifier for the fuzzy set

K = {(r? (λK(r)) | r ∈ R}

in R is given by

(3.1) Kn =
{

(r, λK(r))k
)
| r ∈ R

}
.

Based on the operations, Hwang and Yang [11] and Hung and Yang [13] and in
equation we have:

K
1
2
1 = {(3, 0.316), (4, 0.548), (5, 0.632), (6, 0.949), (7, 1)}

K2
1 = {(3, 0.01), (4, 0.09), (5, 0.16), (6, 0.81), (7, 1)}

K3
1 = {(3, 0.001), (4, 0.027), (5, 0.064), (6, 0.729), (7, 1)},

K4
1 = {(3, 0), (4, 0.008), (5, 0.026), (6, 0.656), (7, 1)}.

We can regard the FS K1 is "LARGE" on R by considering the characterization
of linguistics variables. Correspondingly, to FSs K

1
2
1 , K

2
1 , K

3
1 and K4

1 may be be-
haved as "More or Less Large", "Very LARGE", "Quite Very LARGE", "Very Very
LARGE", respectively. The idea of Shannon’s entropy has been utilized for simple
weighting calculation method [31, 32]. If the value of the information entropy
is greater then the entropy weight information will be lesser [22], The specific
attribute will provide the lesser information as the smaller the different alter-
natives in this specific attribute and in decision making process this specific at-
tribute importance will be less [31]. Intuitively, hidden loss of information will
become less from K

1
2
1 to K

1
2
1 to K4

1 and the entropy provided by them increasing.
So the following order will holds [11, 13, 18]:

(3.2) J(K
1
2 ) > J(K) > J(K2) > J(K3) > J(K4).

To make a comparison, entropy measures JHY (K1), J
β
α(K1), J

new
2 (K1) are placed

to find the analysis. We will compare the different results obtained from the
different measures as shown in Table 1.

From Table 1 we observed that when we apply the entropy measure JY1 (K1),

JKOS (K1) and JLL (K1) FS K
1
2
1 will be assigned less entropy than K. Based on

these measures we will obtained the order of ranking as follows:
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Table 1: Fuzzziness values corresponding to distinct information measures

JY1

(
K

1
2
1

)
> JY1 (K1) > JY1 (K2

1) > JY1 (K4
1) > JY1 (K3

1)

JKos (K1) > JKos

(
K

2
2
1

)
> JKos (K2

1) > JKos (m4
1) > JKos (K3

1)

JLL (K3
1) > JLL

(
K2

1

)
> JLL (K1) > JLL (K4

1) > JLL (K2
1)

From the above order it is clear that this order of entropy measures is not satis-
fying the intuitive analysis equation (4.2), while rest of the entropy measures are
providing the desirable results. JPal (K1) , JHY (K1) , J

β
α (K1) and Jnew2 (K1) are

doing well in this example. This shows that these entropy measures are not suf-
ficient enough to differentiate the uncertainty of FSs with linguistic information.

Example 2: Take another FSK2 defines on R as:

K2 = {(3, 0.2), (4, 0.3), (5, 0.4), (6, 0.7), (7, 0.8)}.

We calculate K
1
2
2 , K

2
2 , K

3
2 and K4

2 . Now we compare only JPal (K2), JHY (K2),
Jβa (K2) and Jnew

2 (K2).

Table 2: Fuzziness values with JPal (K2) , JHY (K2) , J
β
a (K2) and Jnew

2 (K2)

Moreover, the results obtained from entropy measures JPal(K2), J
β
α(K2) are also

not reasonable, which we can see from the following equations:

JPal(K2) > JPal(K
1
2
2 ) > JPal(K

2
2) > JPal(K

4
2) > JPal(K

3
2),

Jβα(K2) < Jβα(K
1
2 ) > Jβα(K2

2) > Jβα(K3
2) > Jβα(K4

2).
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Therefore, the entropy measures JPal(K2), J
β
α(K2) are not suitable for differen-

tiating the information conveyed by FSs. But JHY (K2) and Jnew2 (K2) are also
satisfy the ranking order in equation (4.2). The effectiveness of proposed fuzzy
measure Jnew2 (K2) and JHY (K2) is indicated by this example once again. Hence,
the proposed measure consider one parameter which increase the flexibility due
to the parameter α whereas JHY does not due to the absence of parameters.
Therefore, the proposed measure is encouraging. So the presence of parameter
in an information measure makes it flexible from application point of view.

4. CONCLUSIONS

In this paper, a new information measure which is generalization of Gini
Simpson index of diversity has been effectively introduced. We found that the
four axiomatic requirements properties are satisfied with the new fuzzy entropy.
The proposed information measure has been compared with existing entropies.
Some numerical examples based on linguistic terms have been offered to show
the successful applicability of the proposed information measure. Another pos-
sible topic for future research is to use proposed entropy in the fuzzy setting
for multi criteria decision making problems which can be applied in evaluating
mobile services. The proposed entropy can further be applied to the concept of
the parametric directed divergence measure, similarity and dissimilarity mea-
sure for fuzzy sets, interval valued intuitionistic, pythagorian and picture fuzzy
sets,coding theory etc.
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