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AXISYMMETRIC PROBLEM: IN FRACTIONAL ORDER GENERALIZED
THERMOELASTIC MEDIUM

SUNIT KUMAR1 AND PARVEEN TYAGI

ABSTRACT. We study the axisymmetric problem: Generalized thermoelastic
medium in fractional order for Green-Lindsay [2] theory. Here various com-
ponents of normal displacement vz, normal force stress tzz and temperature
distribution T are obtained in converted domain by applying Laplace (LT) and
Hankel transforms (HT). The result obtained can be applied to some particular
problem subjected to normal source and radial source.

1. INTRODUCTION

Nomenclature.
τ0, ν0: Thermal relaxation time.
α: Conductivity.
T: Temperature.
p: Hydrostatic initial stress.(HIS)
e: div~u.
F: Young’s modulus.
σ: Poission ratio.

In classical theory of thermo-elasticity infinite speed of thermal waves was
used. Practically it is not acceptable. It was observed that in various cases finite
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speed of thermal waves are used. To overcome this problem Lord and Shulmam
[1] presented theory of GT with one relaxation time.

Later on Lindsay and Green [2] presented the theory of two relaxation time
without effecting the Fourier’s Law of heat conduction. Barber [3] contem-
plated thermo-elastic removals and worries due to sources of heat lying outside
the half plane. Sherief [4]obtained components of stress and temperature dis-
seminations in a thermo-elastic medium due to continuous source. H.sherief,
El-Sayed [5] developed the new theory of elasticity by using the method of frac-
tional calculus. A Ezzat [6] also worked on in theory of heat conduction with
fractional order. Sharma et al. [7-8] and [10-13] explored the disturbance due
to mechanical and thermal sources in GT half-space.

There are various reasons of HIS in the medium it may be created due to dif-
ference in temperature, shot sticking and due to other external sources, change
in gravity, and so on. Ailawalia and Kumar [9] has also studied the roational
effect under HIS and gravity.

The current paper is related with the problem of Axi-symmetric: Generalized
thermo elastic medium in fractional order with (HIS) and conductivity. Graph-
ically we can demonstrated the Impact of hydrostatic initial stress and conduc-
tivity.

2. BASIC EQUATIONS

The governing equations are:

σfj = ρ̈iüi,

σij = −p (δij + wij) + 2µeij + λeδij − v
(

1 + v0
∂

∂t

)
Tδij

(2.1)
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(2.2)

where Pα is Riemann-Liouville fractional integral,

Pαg(t) =
1

Γ(α)

∫ t

0

(t− η)α−1g(η)dη,
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for 0 < α < 2 and Pαg(t) = g(t) for α = 0. Here Γ(α) is the gamma function
and 0 ≤ α < 1 for weak conductivity and α = 1, for normal conductivity and
1 < α ≤ 2, for strong conductivity.

FORMULATION OF THE PROBLEM

We consider an isotropic, homogeneous, generalized thermoelastic medium
with HIS at tempertaure TQ, with cylindrical polar coordinates (r, θ, z) by con-
sidering origin at z = 0. z− axis is normal to medium. The plane is considered
to be axis-symmetric. We assume displacement vector ~v = (vr, 0, vz) , quantities
remain independent of θ. The above consideration would reduce to the follow-
ing equation,
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Introducing dimensionless variables defined by

(2.5) r′ =
ω∗

c0

r, z′ =
ω∗

c0

z, v′i =
ρα0ω

∗

vT0

vi, t = ω∗

(2.6)
τ ′0 = ω∗τ0, v′0 = ω∗v0, T ′ = T

T0
, σ′ij =

σij√
T0

p′ = p
vT0
, ω∗ =

ρCpc20
K∗ , (λ+ 2µ) = ρc2

0.

In equations (2.4-2.6), in order to get the dimensionless equation we define
displacement component vr, vz in terms of φ, ψ,

(2.7) vr =
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In the resulting dimensionless equations we get

∇2φ− φ

r2
−
(

1 + v0
∂

∂t

)
T =

∂2φ

∂t2

∇2ψ − ψ

r2
= a1

∂2ψ

∂t2

Pα−1

(
n∗ + t1

∂

∂t

)
∇2T =

(
n1
∂

∂t
+ τ0

∂2

∂t2

)
T + ε

(
n1
∂

∂t
+ τ0n0

∂2

∂t2

)
∇2φ.

(2.8)

Apply LT with respect to ’ t ’ and HT with respect to " r " it will convert tinto s
domain and r into q domain. In equation (2.9)-(2.11) we get(

d2
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− q2 − s2
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(2.9)

Eliminating T̃ from equation (2.10) and (2.12), we get the resulting equation

(2.10)
{
D4 +MD2 +N

}
φ̃ = 0

where

(2.11) M = a6 + a4 − a3a5, N = a4a6 − a3a5q
2

with
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The equation is having solution which satisfies the condition of radiation φ̃, ψ̃, T̃ →
0 as z →∞ are

ψ̃ = A1e
−β2

1

φ̃ = A2e
−P2z + A3e

−p3z

T̃ = a∗2A2e
−P2z + a∗3A3e

−p3z,

where p2
1 = a1s

2 + q2 and p2
2, p

2
3 are roots of (2.13) and b∗i is coupling constant

having value

b∗i =
p2
i + a4

a5

, i = 2, 3.

3. BOUNDARY CONDITIONS

Case I: Loading along normal direction.
When a load F (r, t) put at the interface z = 0 at half space in normal direction
are

σx= = −F1(r, t), σrz = 0, T = 0.

Here
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Case II: Loading along radial direction
At the surface z = 0, load F2(r, t) applied in the radial direction are

σx= = 0, σrz = −F2(r, t), T = 0.

The expressions given by (2.22)− (2.26) with ∆i replaced by ∆∗i where

∆∗1 = p (b∗3s2 − b∗2s3) + F2(r, s) (r2b
∗
3 − r3b

∗
2)

∆∗2 = b∗3 (−r1F2(r, s)− ps1) , ∆∗3 = b∗2 (r1F2(r, s) + ps1) .

In order to determine the stress function and displacement because of a con-
centrated force Dirac delta ρ0δ(r)

2Πr
, its hankel transform defined by F1(r, s) =

F2(r, s) = ρ0
2Π

must be used.
For α = 1.0 and p = 0, the problem reduces to axisymmetric problem in

generalized thermoelasticity.

4. NUMERICAL RESULTS

The calculations will be hold on the surface y = 1.0 at t = 1.0. Figures 1-6
with p = 2.0, show the results for vz, tzz and T in context of Green Linday theory
with following values:

F = 6.9× 1011 [ dynel cm2] , σ = 0.33, ρ = 2.7[callgms0]C

Cp = 0.236 [callGms◦C] , K∗ = 0.492 [callcms◦C] , v = 0.007

T0 = 20 [◦C] , η = 1, µ = F
2η(1+σ)

, λ = Fσ
η(1+σ)(1−2σ)

corresponding to isotropic elastic mediumn (Sharma, 2005). By using two relax-
ation times generalized theory of (Lindsay and Green) by taking τ0 = 0.02, ϑ0 =

0.03 we get the solution from the grapical results such as:
(a) α = 0.2, weakly conductive, (GTHIS-WC),
(b) α = 1.0, normal conductive, (GTHIS-NC),
(c) α = 1.8, strongly conductive, (GTHIS-SC).

Generalized thermoelastic medium with HIS (GTHIS):
(d) α = 0.2, weakly conductive, (GTWHIS-WC),
(e) α = 1.0, normal conductive, (GTWHIS-NC),
(f) α = 1.8, strongly conductive, (GTWHIS-SC).

Generalized thermoelastic medium without HIS (GTWHIS):
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5. DISCUSSIONS

Normal direction.

Fig. 1 analysed the variations of (vz) with (r) distance has appreciable effect
in the bandgap 0 ≤ r ≤ 2.0. The effect of HIS and thermal conductivity are
clearly visible in the range. The effect of these factors however decline with
increase in radial distance r in the band gap of 7.0 ≤ r ≤ 10.0, the effect of HIS
and thermal conductivity is almost negligible.

Fig. 2 analysed the variations of (tzz) with (r). Normal force stress increases
sharply for weak conductivity from 0 ≤ r ≤ 5.8 with HIS whereas without HIS
the value of (tzz) are very less. With HIS variation of (tzz) are more oscillatory
for weak and highly conductive material whereas the variation is close to zero
for normal conductivity.

Fig. 3 analysed the variations of (T ) with (r). This fig shows that without HIS
the variation of (T ) are oscillatory in nature also these variation are similar for
highly conductive, normal conductive and weakly conductive material. It is also
observed that the value of (T ) for a particular conductive material are very less
in the presence of HIS.

Radial direction.

Figure 4 analysed that the value of (vz) decreases sharply in the band gap of
0 ≤ r ≤ 2.0. The decrease is maximum for normal conductive material. With-
out HIS value of (vz) are opposite in nature for highly conductive and normal
conductive material.

The variations of (t=x) with (r) distance is analysed from figure 5 with HIS
the value of (txz) are mirror image of weakly conductive and highly conductive
material in the band gap of 0 ≤ r ≤ 3.0, where as the value of t=2 ) are highly
oscillatory for normal conductive material than highly conductive material with-
out HIS.

Figure 6 analysed the variation of (T ) with (r). In the presence of HIS the
value of T are oscillatory for normal conductive and highly conductive material.
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6. FIGURES

Figure 1: Variation of Normal Displacement vz with distance r (Loading along
normal direction)

Figure 2: Variation of Normal force stress tzz with distance r (Loading along
normal direction)
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Figure 3: Variation of Temperature Distribution T with distance r (Loading
along normal direction)

Figure 4: Variation of Normal force stress tzz with distance r (Loading along
radial direction)
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Figure 5: Variation of Temperature Distribution T with distance r (Loading
along radial direction)

7. CONCLUSIONS

We conclude that Hydrostatic initial stress and thermal conductivity shows
critical impact on all the quantities, for both normal and radial source the vari-
ation in quantities are almost same with some magnitude difference.In the ab-
sence of HIS the variation in (T) are oscillatory in nature.
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