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ABSTRACT. In this paper, we have developed a deterministic dynamic model of
malaria transmission governed by a non-linear system of differential equations.
We consider global dynamic of the model by finding the basic reproduction
number (R0) using Next Generation Matrix. Direct method of Lyapunov func-
tion is employed to show the global stability analysis of disease-free equilibrium
(E0) and endemic equilibrium (E1). The results illustrate that malaria would
become extinct in the neighbourhood whenever R0 ≤ 1. Also, malaria would
persist in the neighbourhood whenever R0 > 1 regardless of the number of
infectious humans at initial stage of the population as endemic equilibrium is
globally stable.

1. INTRODUCTION

Malaria is a life-threatening disease caused by parasites that are transmitted
to people through the bites of infected female Anopheles mosquitoes. It is pre-
ventable and curable. Malaria still remains one of the most leading mortality
rate after HIV/ AIDS in Africa [1]. In fact, an estimated 405, 000 mortality of
humans in which 272,000 of under aged 5 years children were recorded world-
wide in 2018 according to WHO [2]. Roll-Back Malaria (RBM) programme
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was instigated to focus on two important areas namely, prevention and treat-
ment of malaria. Because of this, Roll-Back Malaria Partnership makes public
new strategies to curb malaria globally by 2030 [3]. Ghana and Nigeria are
listed to be among the top 10 countries in Africa that had risen cases in mor-
tality rates in 2018. Many researchers have developed mathematical models
on malaria such as [4–9]. Currently, no study has considered exposed-class,
disease-induced death rates, nonlinear force of infection, and newborn birth
rates with the global stability at the same time. Many researchers developed
epidemiological mathematical models on global stability and considered vari-
ous approaches [10]–[15]. This work focuses on the analysis of the Globally
Asymptotically Stability (GAS) for both disease-free and endemic equilibrium to
the proposed malaria model.

2. MATERIALS AND METHODS

This developed model is an extension of Budhwar and Daniel [15] integrated
with the rate of newborn birth with human infection, the exposed mosquito
population compartment, the disease-induced death rate and the rate of re-
lapse in the human population which comprises the exposed and infected com-
partments. The total population of humans Nh(t) can be defined as Nh(t) =

Sh(t) + Eh(t) + Ih(t) + Rh(t) where Sh(t), Eh(t), Ih(t) and Rh(t) represent sus-
ceptible humans, exposed humans, infectious o humans and recovered humans
respectively. Similarly, the total population of mosquitoes Nm(t) can be defined
as Nm(t) = Sm(t)+Em(t)+Im(t) where Sm(t), Em(t) and Im(t) represent suscep-
tible mosquitoes, exposed mosquitoes and infectious mosquitoes respectively.
Λh is the recruitment rate of the humans, υ is the rate of exposed in humans,
ω is the recovery rate of humans, γ2 is the relapse rate of humans (the rate at
which humans with low immunity return from recovered class back to infectious
class), ψ is the rate of newborn’s birth with infection of humans, µ is the natural
death rate of humans, δh is the disease-induced death rate of humans, γ1 is the
loss of immunity rate of humans, Λm is the recruitment rate of mosquitoes, δm
is the disease-induced death rate of mosquitoes, βm is the rate of interaction
between human and mosquito and βh is the rate of interaction between human
and mosquito. The flow chart of host-vector (human-mosquito) populations is
shown in figure 1.
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FIGURE 1. Flow chart of the model

2.1. Assumptions of the Model. Some of the assumptions used in the model
are listed below

(i) Mosquitoes are assumed not to recover from the parasites.
(ii) The human population has a low or incomplete immunity to malaria.

(iii) The exposed class can also transmit the disease.
(iv) There is relapse of the infection after treatment.
(v) Malaria is contracted only from infected mosquitoes.

(vi) Newborn births can be affected by malaria.

The differential equations of the flow chart in figure 1 are

dSh(t)

dt
= Λh − βhSh(t)Im(t)− µSh(t) + γ1Rh(t)

dEh(t)

dt
= βhSh(t)Im(t)− (υ + µ+ δh)Eh(t)

dIh(t)

dt
= υEh(t)− (ω + µ+ δh − ψ)Ih(t) + γ2Rh(t)

dRh(t)

dt
= ωIh(t)− (γ1 + γ2 + µ)Rh(t)

(2.1)

dSm(t)

dt
= Λm − βmSm(t)Ih(t)− ηSm(t)

dEm(t)

dt
= βmSm(t)Ih(t)− (α + η)Em(t)

dIm(t)

dt
= αEm(t)− (η + δm)Im(t) .
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2.2. Basic Properties of the Model.

2.2.1. Positivity of the Solution. Consider the positivity solution of the state vari-
ables of model (2.1) with non-negative initial conditions.

Theorem 2.1. Let Sh(0), Eh(0), Ih(0), Rh(0), Sm(0), Em(0), Im(0) be non-negative,
then the solutions (Sh(t), Eh(t), Ih(t), Rh(t), Sm(t), Em(t), Im(t)) of the model (2.1)
are non-negative for all t > 0.

Proof. Let t∗ = sup{t > 0 : Sh(t) > 0, Eh(t) > 0, Ih(t) > 0, Rh(t) > 0, Sm(t) > 0,

Em(t) > 0, Im(t) > 0} then t∗ > 0. From the first equation in the model (2.1),
we say that

dSh(t)

dt
= Λh + γ1Rh(t)− βhSh(t)Im(t)− µSh(t) ≥ Λh − [βhIm(t)− µ]Sh(t) .

This can be written as
d

dt

[
Sh(t) exp

∫ t
0 βhIm(s)ds+µt

]
≥ Λh exp

∫ t
0 βhIm(s)ds+µt .

Integrating both sides from t = 0 to t = t∗ and to make Sh(t∗) subject of the
formula, we obtain

Sh(t
∗) ≥ Sh(0)

[
exp−

∫ t∗
0 βhIm(s)ds+µt∗

]
+
[
exp−

∫ t∗
0 βhIm(s)ds+µt∗

]
×
[∫ t∗

0

Λh exp−
∫ t∗
0 βhIm(y)dy+µx dx

]
> 0 .

As a result, Sh(t∗) being > 0 the sum of positive terms is positive [19]. By same
argument, it can also be proved that Eh(t) > 0, Ih(t) > 0, Rh(t) > 0, Sm(t) >

0, Em(t) > 0, Im(t) > 0 for all t > 0. �

2.2.2. Boundedness of the Solution. It is very important to show the bounded-
ness solution of the model (2.1).

Theorem 2.2. All solutions (Sh(0), Eh(0), Ih(0), Rh(0), Sm(0), Em(0), Im(0)) of the
malaria model (2.1) are bounded. Therefore, from (2.1), if

lim
t→∞

sup Nh(t) ≤
Λh

µ

lim
t→∞

sup Nm(t) ≤ Λm

η

then Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t) and Nm(t) = Sm(t) + Em(t) + Im(t).
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Proof. With the proof of boundedness, 0 < Eh(t) ≤ Nh(t),
0 < Ih(t) ≤ Nh(t), 0 < Em(t) ≤ Nm(t) and 0 < Im(t) ≤ Nm(t). Adding the
human population and the mosquito population from (2.1), we obtain respec-
tively

dNh(t)

dt
=Λh − µNh(t)− δhEh(t)− δhIh(t) + ψIh(t)

dNm(t)

dt
=Λm − ηNm(t)− δmIm(t) .

(2.2)

All solutions of model (2.1) are bounded. Hence, equation (2.2) is given by

Λh − (µ+ 2δh − ψ)Nh(t) ≤
dNh(t)

dt
≤ Λh − µNh(t)

Λm − (η + δm)Nm(t) ≤ dNm(t)

dt
≤ Λm − ηNm(t) .

Therefore, this can now be written as

Λh

(µ+ 2δh − ψ)
≤ lim

t→∞
inf Nh(t) ≤ lim

t→∞
sup Nh(t) ≤

Λh

µ

Λm

(η + δm)
≤ lim

t→∞
inf Nm(t) ≤ lim

t→∞
sup Nm(t) ≤ Λm

η
.

�

2.2.3. Invariant Region. Consider the model (2.1) with non-negative initial con-
ditions, all the state variables must be meaningful mathematically, biologically,
epidemiological and positively invariant in the region Ω , see Olaniyi at al. [4].

Theorem 2.3. The region Ω = Ωh ∪ Ωm ⊂ R4
+ × R3

+ is positively invariant for
the model (2.1) with non-negative initial conditions R7

+.

Proof. Let Ωh represent feasible region of human population and Ωm represent
feasible region of mosquito population of the model (2.1). Therefore, the feasi-
ble region of the model (2.1) can be written as

Ω = Ωh ∪ Ωm ⊂ R4
+ × R3

+

with

Ωh =

{
(Sh, Eh, Ih, Rh) ∈ R4

+ : Sh + Eh + Ih +Rh ≤
Λh

µ

}
Ωm =

{
(Sm, Em, Im) ∈ R3

+ : Sm + Em + Im ≤
Λm

η

}
.
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To reaffirm the positive invariance of Ω, the following steps are considered for
the solution in Ω ∀ t > 0. Model (2.1) is the rate of change of human and
mosquito populations and this follows that

dNh(t)

dt
≤ Λh − µNh(t)

dNm(t)

dt
≤ Λm − ηNm(t) .

Therefore, by the standard comparison theorem by Lakshmikantham et al. [16],
we obtain

Nh(t) ≤ Nh(0)e−µt +
Λh

µ

(
1− e−µt

)
Nm(t) ≤ Nm(0)e−ηt +

Λm

η

(
1− e−ηt

)
.

In particular, Nh(t) ≤
Λh

µ
if Nh(0) ≤ Λh

µ
and Nm(t) ≤ Λm

η
if Nm(0) ≤ Λm

η
. Hence

the region Ω is positive invariant. It sufficient to consider the dynamics of the
flow formulated by model (2.1) in Ω. �

2.2.4. Existence of Equilibrium Point of the Model. It is very important to exam-
ine the model (2.1) quantitatively to study the condition of existence of equi-
librium points as well as to know what will finally occur to the disease as time
goes on. These questions may arise thus:

(i) will the disease (malaria) become extinct? Or
(ii) will this disease be found in the population and turn out to be endemic?

To answer the above questions, it is necessary to consider the long-term be-
haviour of the solutions. This behaviour could be determined mainly on the
equilibrium points. For equilibrium point, setting the derivatives on the right
hand side of model (2.1) to be zero, then to show that disease free equilibrium
exists, let Eh = Ih = Em = Im = 0 to obtain

(2.3) E0 = (
Λh

µ
, 0, 0, 0,

Λm

µ
, 0, 0)

Therefore, equation (2.3) shows that disease free equilibrium exists.
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2.2.5. Basic Reproduction Number (R0). We derive R0 of the disease free equi-
librium (DFE) by using next generation matrix method. Therefore, if matrix F

stands for new infection terms and V stands for the remaining transfer terms of
the DFE, then FV−1 is called "Next Generation" Matrix.

F =


0 0 0

βhΛh

µ
0 0 0 0

0
βmΛm

η
0 0

0 0 0 0


and

V =


υ + µ+ δh 0 0 0

−υ ω + µ+ δh − ψ 0 0

0 0 α + η 0

0 0 −α η + δm

 .

Multiplying F with the inverse matrix of V and since, the basic reproduction
number (R0) is the dominant or largest eigenvalue corresponding to the Spec-
tral radius of matrix (FV−1). According to Anderson and May [17] , the basic
reproduction number can be expressed asR0 = ρ(FV−1) where ρ is the Spectral
radius. Therefore, the basic reproduction number is given by

R0 =

√
υβhΛh

µ(υ + µ+ δh)(ω + µ+ δh − ψ)

αβmΛm

η(α + η)(η + δm)
.

3. GLOBAL STABILITY ANALYSIS

3.1. Global Stability of the Disease-Free Equilibrium (DFE).

Theorem 3.1. If R0 ≤ 1 then the disease free equilibrium E0 given by equation
(2.3) is globally asymptotically stable. Otherwise, it is unstable.

Proof. Olaniyi et al. [18], consider the formed Lyapunov function of the type

F = a1Eh + a2Ih + a3Em + a4Im

where a1 =
υ

µ(υ + µ+ δh)(ω + µ+ δh − ψ)
, a2 =

1

(ω + µ+ δh − ψ)
, a3 =

ηR0

βmΛm

and a4 =
η(α + η)R0

βmαΛm

. It is clearly shown that a1, a2, a3 and a4 are all positive.
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Therefore, the derivative of F can be written as

Ḟ = a1Ėh + a2İh + a3Ėm + a4İm

Ḟ =
υ

µ(υ + µ+ δh)(ω + µ+ δh − ψ)
(βhShIm − (υ + µ+ δh)Eh)

+
1

(ω + µ+ δh − ψ)
(υEh − (ω + µ+ δh − ψ)Ih + γ2Rh)

+
ηR0

βmΛm

(βmIhSm − (α + η)Em)

+
η(α + η)R0

βmαΛm

(αEm − (η + δm)Im) .

(3.1)

From the equations (3.1), we obtain

Ḟ =

(
υβhSh

(υ + µ+ δh)(ω + µ+ δh − ψ)
− η(α + η)(η + δm)R0

βmΛmα

)
Im

+

(
ηR0Sm

Λm

− 1

)
Ih +

(
γ2

(ω + µ+ δh − ψ)

)
Rh

≤
[

υβhΛh

µ(υ + µ+ δh)(ω + µ+ δh − ψ)
− η(α + η)(η + δm)R0

βmΛmα

]
Im

+ (R0 − 1) Ih

=

[(√
υβhΛhη(α + η)(η + δm)

αβmΛmµ(υ + µ+ δh)(ω + µ+ δh − ψ)

)
Im + Ih

]
(R0 − 1) .

The above result, Ḟ ≤ 0 provided R0 ≤ 1 as well as o. tF = 0 provided that
R0 = 1 or Ih = 0 and Im = 0. This means that the highest invariance set
in
{

(Sh, Eh, Ih, Rh, Sm, Em, Im) ∈ R7
+ : Ḟ = 0

}
is the singleton DFE (E0) and by

LaSalle’s Invariance Prnciple according to LaSalle [19], DFE (E0) is globally
asymptotically stable in R7

+. Epidemiologically, the prove of theorem 3.1 shows
that malaria would become extinct in the neighbourhood whenever R0 ≤ 1

regardless of the number of humans in model (2.1) at initial stage of the popu-
lation. �

3.2. Global stability analysis of endemic equilibrium.

Theorem 3.2. If R0 > 1 then model (2.1) has a unique endemic equilibrium (E1)

whenever R0 > 1 and no endemic equilibrium otherwise.
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Proof. For equilibrium point, setting the derivatives on the right hand side of
model (2.1) to be zero and let Sh = S∗h, Eh = E∗h, Ih = I∗h, Rh = R∗h, Sm =

S∗m, Em = E∗m and Im = I∗m to establish the existence of endemic equilibrium
points as E1 = (S∗h, E

∗
h, I
∗
h, R

∗
h, S

∗
m, E

∗
m, I

∗
m) Therefore, the model (2.1) becomes

S∗h =
Λh + γ1R

∗
h

µ+ βhI∗m
; E∗h =

βhI
∗
mS
∗
h

(υ + µ+ δh)
; I∗h =

υE∗h + γ2R
∗
h

ω + µ+ δh − ψ

R∗h =
ωI∗h

γ1 + µ+ γ2
; S∗m =

Λm

η + βmI∗h
; E∗m =

βmI
∗
hS
∗
m

(α + η)

I∗m =
αE∗m
η + δm

.

(3.2)

For convenience, let x1 = (υ+µ+ δh), x2 = (ω+µ+ δh−ψ) and x3 = (γ1 + γ2 +

µ). By substitution method and making Ih subject of formula, equation (3.2)
becomes

(3.3) AI∗h + B = 0

where A = (x2η (υγ1ω + x1γ2ω − x1x2x3)R2
0 + υΛhβm(ωγ2 − x2x3)) and

B = υΛhη (x2x3(R2
0 − 1) + ωγ2). Hence, equation (3.3) can be defined as

I∗h =
−B
A
≤ 0 if B ≥ 0 at R0 ≤ 1, and endemic equilibrium does not exist.

Moreover, I∗h =
B
A
> 0 if B < 0 at R0 > 1. Therefore, there exists the endemic

equilibrium only at R0 > 1. This shows that model (2.1) has a unique endemic
that is positive equilibrium whenever R0 > 1. �

Theorem 3.3. If R0 > 1 then the endemic equilibrium of model (2.1) given by
E1 = (S∗h, E

∗
h, I
∗
h, R

∗
h, S

∗
m, E

∗
m, I

∗
m) is globally asymptotically stable in the interior of

the region R7
+.

Proof. Following Olaniyi et al. [18], and Shuai and Van Den Driessche [20], the
equation below is made of the following Goh-Volterra type Lyapunov function:

T = Sh − S∗h − S∗h ln
Sh
S∗h

+ Eh − E∗h − E∗h ln
Eh
E∗h

+ k1(Ih − I∗h − I∗h ln
Ih
I∗h

) + k2(Sm − S∗m − S∗m ln
Sm
S∗m

)

+ k3(Em − E∗m − E∗m ln
Em
E∗m

) + k4(Im − I∗m − I∗m ln
Im
I∗m

)

(3.4)



5314 A. I. ABIOYE, O. J. PETER, F. A. OGUNTOLU, A. F. ADEBISI, AND T. F. AMINU

where k1 =
βhS

∗
hI
∗
m

υE∗h
k2 = k3 =

βhS
∗
hI
∗
m

βmS∗mI
∗
h

and k4 =
βhS

∗
hI
∗
m

αE∗m
. Differentiating

equation (3.4) with respect to time and If Rh → R∗h as time, t→∞ in equation
(3.2) and model (2.1) then using substitution method as well as simplifying to
obtain

Ṫ =µS∗h

(
2− S∗h

Sh
− Sh
S∗h

)
+
βhS

∗
hI
∗
m

βmI∗h

(
2− S∗m

Sm
− Sm
S∗m

)
+ βhS

∗
hI
∗
m(

6− S∗h
Sh
− I∗hEh
IhE∗h

− ShImE
∗
h

S∗hI
∗
mEh

− S∗m
Sm
− I∗mEm
ImE∗m

− SmIhE
∗
m

S∗mI
∗
hEm

)
≤ 0 .

Therefore, since arithmetic mean is greater than the geometric mean, then the
following inequalities hold:

2−S
∗
h

Sh
− Sh
S∗h
≤ 0, 2− S∗m

Sm
− Sm
S∗m
≤ 0 and(

6− S∗h
Sh
− I∗hEh
IhE∗h

− ShImE
∗
h

S∗hI
∗
mEh

− S∗m
Sm
− I∗mEm
ImE∗m

− SmIhE
∗
m

S∗mI
∗
hEm

)
≤ 0 .

�

For that reason, Ṫ ≤ 0 for R0 > 1. Since all the parameters are non-negative
with Ṫ = 0 provided that, Sh = S∗h, Eh = E∗h, Ih = I∗h, Sm = S∗m, Em = E∗m and
Im = I∗m. Meanwhile Rh → R∗h as time, t → ∞ and so by LaSalle’s invariance
principle (LaSalle [19]) the endemic equilibrium E1 is globally asymptotically
stable whenever R0 > 1. Epidemiologically, Theorem 3.3 means that malaria
will persist in the neighbourhood whenever R0 > 1 regardless of the number of
infectious humans at initial stage of the population.

4. CONCLUSION AND FUTURE WORK

A deterministic mathematical model was developed for the transmission dy-
namics of malaria. Basic properties of the model were analyzed. The basic
reproduction number (R0 ) of the model showed that the disease free equilib-
rium is stable whenever R0 < 1 or globally asymptotically stable. Otherwise
unstable. Therefore, the outcomes revealed that eradication in the neighbour-
hood was contingent largely on the basic reproduction number (R0 ) of the
autonomous model. Meanwhile, the numerical simulation aspect was not con-
sidered in this work, this gives space for further research. Lastly, the study of
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global stability for both disease-free and infectious equilibriums reveals that the
epidemic will become extinct and will turn out to be present respectively.
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