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OPTIMIZING INVENTORY POLICY FOR TIME-DEPENDENT DEMAND
WITH IMPERFECT ITEMS

RUCHI SHARMA1 AND GURCHARAN SINGH

ABSTRACT. Through this paper, an inventory model is proposed for a manufac-
turing process which produces perfect and after some time imperfect items. It’s
been assumed that demand is time-dependent and production is greater than
demand. The rate of production of items is directly affected by demand. A fur-
ther assumption is made that the system starts producing imperfect items after
some time of operation due to various factors. For imperfect items, collection
and repair work has been considered which optimizes the inventory. Repair of
the imperfect items starts when regular production stops. Using the concepts
of differential calculus, the optimum inventory is obtained to capitalize on the
profit and reduce the cost. An example is discussed to demonstrate the theory.

1. INTRODUCTION

In traditional manufacture inventory model it is understood that manufactur-
ing systems are absolutely trustworthy. But for almost every actual system this
assumption does not hold true. It’s always possible for even the best production
system to produce imperfect items. In this paper, the manufacturing process is
taken to be flexible but flawed. During a production run, it is considered that af-
ter some time of operation the system could manufacture some imperfect items.
Considering the present scenario of the market and the competition, it’s very
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difficult to survive for a company without optimizing its production policy. So
the companies have to adapt to different methods or strategies to increase profit
by repairing the imperfect items rather than throwing the same. Further, the
environmental issues caused by these forced governments around the globe to
frame regulations that want manufacturers to reduce waste by repairing or re-
cycling the imperfect items produced. Taking into consideration all the factors,
it is enviable to study the significance of a flexible manufacturing system that
can repair imperfect items and adjust itself to the demand.

S.R. Singh et al. (2014) obtained high profit using increased production up-
time and reduced production rate in comparison with less production uptime
and elevated production rates in the stochastic model. It was also concluded
that the elevated production cost per unit reduced the anticipated profit. S.R.
Singh et. al. (2013) studied the process of remanufacturing and its effects in an
integrated manufacture inventory model which includes deteriorating products
considering stock dependent demand facing shortages. They proved total cost
function that can reduce total cost incurred. Himani Dem and Leena Prasher
(2013), optimized the inventory with collection and rework of reusable items.
Kung-Jeng Wang et. al. (2011) optimized inventory having multi-echelon de-
liver chain for products with deteriorating rate being time-sensitive. B.C. Giri
and A. Chakraborty (2011) developed a model considering sole vendor and sole
buyer. It was termed as supply chain coordination model. The demand by the
buyer is taken as a linear function of the on-hand inventory, the buyer screens
the products after every replenishment. A coordination policy for vendor-buyer
was determined to reduce the cost of supply chain. Shib Sankar Sana (2010)
proposed a model to calculate the most favorable product consistency and pro-
duction rate that obtain the maximum total profit for a defective manufacturing
practice. Kuo-Lung Hou (2006) derived an optimum stock model with short-
ages, fading items, stock-dependent consumption rates allowing for inflation
for finite planning prospect. S. Rana et. al. (2004) proposed an optimal model
taking demand as directly proportional to time with shortages, deterioration
and finite production rate. S. Kar et. al. (2001) suggested an optimal model
taking primary and secondary shops with detoration. Jinn-Tsair Teng et. al.
(1999) proved with a mathematical formulation that a the flexibility in policy
to beginning and/or end the planning horizon with shortages is found to be less
expensive to operate in comparison with a policy without shortages at the start
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or end-stage. B.C. Giri and K.S. Chaudhuri (1998) worked on an extended EOQ
-type inventory model for a perishable product. They reasoned that when con-
trolling costs are kept nonlinear, demand rate is stock-dependent and with the
end status of zero ending inventories, an optimal solution was obtained.

Assumptions

1) Production rate is in direct proportion with demand which, in turn, is
time-dependent.

2) The relation of time-dependent demand and time is

f(q) = Dtβ, D > 0, 0 < β < 1, t ≥ 0,

where β represents the sensitivity of demand.
3) The time scope of the inventory is taken to be t5.

Notations:
Q : Maximum inventory of expected production uptime.
Q1 : Perfect item inventory at time t1.
f(q) : Demand rate, f(q) = Dtβ, D > 0, 0 < β < 1, t ≥ 0

P : Production Rate
P2 : production rate of the repaired item
K : Ordering cost per cycle
HC : Holding cost per cycle
DC : Deteriorating cost per cycle
TAC : Total average cost of inventory
cp : Item production cost
h : Holding cost of inventory per unit time
θ : Rate at which imperfect items are produced
Qc : Inventory of collective items
Qr : Inventory of repaired items
t1 : Time when perfect and imperfect items produced and start of collection of
imperfect item.
t2 : When regular production, as well as the collection of imperfect items, stop
and repair of collective item start
t3 : When all the imperfect items have been repaired
t5 : Duration of the complete cycle
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Model Formulation

Fig.1: Inventory flow with collection & repair

It is assumed that from time 0 to t1, the production is perfect. After time
t1, the production unit produces both perfect as well as defective items. These
defective items are collected from time t1 to t2. Assuming inventory of imperfect
items from t1 to t2 is q2. Regular production stops at time t2, and the repair of
collective items starts. At time t3, the imperfect item reduces to q3 i.e., from time
t2 to t3 and repaired items are produced from t2 to t3. From t3 to t5, imperfect
items that are perfect now, satisfy the demand.

The governing differential equations for perfect items are:
dq1
dt

= P −Dtβ, q1(0) = 0, 0 ≤ t ≤ t1
dq1
dt

= P −Dtβ − θP, q1(t2) = Q, t1 ≤ t ≤ t2

The governing differential equations for imperfect items collection and repair
are:

dq2
dt

= θP, q2(t1) = 0, t1 ≤ t ≤ t2
dq1
dt

= −Dtβ, q1(t5) = 0, t2 ≤ t ≤ t5
dq3
dt

= P2 −Dtβ, q3(t2) = 0, t2 ≤ t ≤ t3
dq2
dt

= −θP, q2(t3) = 0, t2 ≤ t ≤ t3
dq3
dt

= −Dtβ, q3(t5) = 0, t3 ≤ t ≤ t5

Solving the above differential equation and using the associated boundary con-
ditions, we get the inventory level

q1 = (l−1)Dtβ+1

β+1

q1 = Q+
(l−1−θD)(tβ+1−tβ+1

2 )

β+1

q2 =
lθD(tβ+1−tβ+1

1 )

β+1

q1=
D(tβ+1

5 −tβ+1)

β+1
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q3 =
(lD2−D)(tβ+1−tβ+1

2 )

β+1

q2 = − lθD(tβ+1−tβ+1
3 )

β+1

q3 =
D(tβ+1

5 −tβ+1)

β+1

Using the relations q1(t2) = Q, q2(t2) = Qc, q3(t3) = Qr we get
tβ+1
1 = Q1(β+1)

(l−1)D

tβ+1
2 = tβ+1

1 − (Q1−Q)(β+1)
(l−1−θ)D

Qc = lθD(Q−Q1)
(l−1−θ)D

tβ+1
5 = tβ+1

2 + Q(β+1)
D

tβ+1
3 = tβ+1

2 + Qr(β+1)
lD2−D

tβ+1
3 = tβ+1

5 − Qr(β+1)
D

tβ+1
5 = (β + 1)( Q1

(l−1)D
− Q1−Q

(l−1−θ)D + Q
D

)

Holding cost from 0 ≤ t ≤ t5 = holding cost of perfect items + holding cost
of collected items + holding cost of repaired items

=h[
(Q−Q1(β+1)

(l−1)D
+

(Q1−Q)(β+1)
(l−1−θ)D)

(Q−Q1)

(l−1−θ)D - (Q1−Q)
β+1

+
lθ(Q−Q1)(1−Q1(β+1)

(l−1)D
)

(l−1−θ)D

+
D((β+1)(

Q1
(l−1)D

− Q1−Q
(l−1−θ)D+

Q
D
Q

D
− Q
lD2

β+1
+ (lD2 −D)Q(1 − Q1(β+1)

(l−1)D

+ (Q1−Q)(β+1)
l−1−θ)D)

/(β + 1)lD2 +D[
Q(lD2−D)((β+1)

Q1
(l−1)D

− Q1−Q
(l−1−θ)D+Q

D
−1)

(lDD2(β+1)

+ Q1

β+1
- lθDQr(1−tβ+1

3 )

(β+1)(lD2−D)
]

Dc = Φcp
(Q−Q1(β+1)

(l−1)D
+

(Q1−Q)(β+1)
(l−1−θ)D )(Q−Q1)

(l−1−θ)D − (Q1−Q)
β+1

+ lθ
(Q−Q1)

(1 − Q1(β+1)
(l−1)D

(l − 1 − θ)D +D[
(β+1)(

Q1
(l−1)D

− Q1−Q
(l−1−θ)D+Q

D
)Q

D

− Q
lD2

1
β+1

+
Q

(Q1(β+1)
(l−1)D

− (Q1−Q)(β+1)
(l−1−θ)D +

(β+1)Q
lD2

−1

β+1
]

+D[
Q(lD2−D)((β+1)(

Q1
(l−1)D

− Q1−Q
(l−1−θ)D+Q

D
)−1)

lDD2(β+1)
+ Q1

β+1
− lθDQr(1−tβ+1

3 )

(β+1)(lD2−D)
]

The total average cost per unit time is given by

TAC =
K +HC +DC

ts
.

To find the expression for time when the production should stop, when q
takes optimum value Q, we need to minimize TAC of the inventory system. The
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essential condition for TAC to be minimum is:

d

dQ
(TAC) = 0.

This yields
t5[

d(HC)
dQ

+ d(DC)
dQ

] − (K +HC +DC)dt5
dQ

= 0

t5 = ( Q1

(l−1)D
− Q1−Q

(l−1−θ)D + Q
D

If Q1 = NQ
dt5
dQ

= N
(l−1)D

+ 1−N
(l−1−θ)D + 1

D

Special case: as θ = 0,Φ = 0, β = 0 and l tends to infinity
t5 = Q

D

DC = 0

Hc = h(Q+ 2Q2

D

Q =
√

KD
2h

Thus as l increases production run size approaches to EOQ model.

Numerical example:

Here, we discuss one example using computational results which are obtained
using Wolframe Mathematica7 giving insight about the response of optimal run
size Q, production time t5 and the total average cost TAC . The parametric values
for the numerical example are taken as K = 200 , D = 2 , D2 = 2 , N = 0.2 , ch
= 0.5 ,l =2 ,θ = 0.002 , cp = 0.4.
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Fig.1: Variation of Q with HC

Fig.2: Variation of TAC with HC

It can be seen from the plots that when the holding cost increases inventory
decreases and total average cost increases.



5508 RUCHI SHARMA AND GURCHARAN SINGH

Fig.3: Variation of Q with β

Fig.4: Variation of TAC with β

The plots show the variations of Q and TAC with β. We observe that as the
responsiveness of demand increases inventory increases and corresponding TAC
decreases.

Observation:

- Completion of time does not affect by perfect items or independent of
perfect items.

- As β increases, Q decreases i.e. as respond of demand increases corre-
sponding inventory automatically decreases.

- An increase in holding cost results in decrease in Q decreases i.e. inven-
tory decreases.

- As the percentage of perfect items increases, inventory increases.



OPTIMIZING INVENTORY POLICY FOR TIME-DEPENDENT DEMAND WITH IMPERFECT ITEMS5509

2. CONCLUSION

Time management should be in such a way that in which repaired articles
that are perfect now and perfect articles meets the demand. We are finding
the maximum inventory at which the production should stop. We observe that
even if a collective rate is 0.2% per unit time, the repaired items are 50% of the
inventory at a time when the production stops. As the holding cost increases,
inventory decreases and the corresponding total average cost increases. This is
true for the bulk inventory which leads to a decrease in cost. If the inventory is
less, the cost will increase. Therefore, rather than to throw the imperfect items,
if we collect and repair them with the same holding cost, the total inventory
will increase and the corresponding cost will decrease. Total completion time of
repair depends upon the inventory at which the production stops.
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