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POSITIVITY AND MONOTONICITY SHAPE PRESERVING USING
RATIONAL QUINTIC FRACTAL INTERPOLATION FUNCTIONS

SNEHA! AND KULDIP KATIYAR

ABSTRACT. The traditional interpolation schemes has great limitations for ir-
regular shape kind of data. So for this we establish FIF for describe the ir-
regular shape data or derivatives. In this paper we developed rational quintic
fractal interpolation function of the form % having three shape parameters
and a vertical scaling factor in each sub-interval. The sufficient conditions for
positive preservation and monotonicity preservation are presented in this paper.

1. INTRODUCTION

The practical examples such as information representation, data science, PC
illustrations, data is produced by complex functions or some scientific methods,
as a rule need to create a smooth function, a set of data is interpolate and hold
some geometric traits, we for the most part call it shape preserving function,
the spline interpolation method called classical cubic spline interpolation, gen-
erally refused shape preserving function. In ongoing 30 years, rational cubic
spline has become a problem area in modern structure and logical information
perception on account of its less oscillation and preferred properties over com-
mon polynomial interpolation. The theory of fractal interpolation function was
presented by Barnsley [1, 2] for the first time by using the iterated function
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system(IFS). Barnsley and Harrington [3] developed a smooth FIF to estimated
the unknown function value. Later many research scholars presented the FIF
theory [5, 6, 18]. More and more authors have been contributed in the research
field of fractal theory which has been used in various field of complex phenom-
enon. In practical theory fractal theory is very useful and easy to calculate. We
have examined the properties of rational fractal interpolation functions in recent
years.For instance, SQ Deng et al. [7] introduced the shape control conditions
of rational cubic interpolating spline. Karim S A A et al. [8] studied the shape
preserving interpolation using C2 rational cubic spline and obtained the mono-
tonicity conditions. Abbas M et al. [9] studied the monotonicity preserving C2
bivariate rationalcubic spline for monotone data.

In literature [10-12] the research on the positive preservation of rational frac-
tal interpolation functions were discussed for all kind of systems. In [13] con-
vexity preservation through rational cubic spline fractal interpolation functions
were introduced. In [15] the positivity preserving rational cubic Ball constrained
interpolation was presented. In [16] the construction of rational cubic trigono-
metric fractal interpolation functions was introduced and discussed its positive
preserving aspects.Based on the article [17] the further properties of shape pre-
serving are discussed in this paper and the corresponding data constraints are
obtained in terms of positivity and monotonicity preserving. The objective of
this paper is to present the monotonicity shape preserving conditions and posi-
tive shape preserving conditions of the given set of data for C2-RQFIF with three
free parameters. In section 2, the general introduction about FIF is reviewed. In
section 3, the construction of C?-RQFIF is discussed. In section 4, we establish
the sufficient conditions for positivity preservation. In section 5, the sufficient
conditions for monotonicity preservation are established.

2. FRACTAL INTERPOLATION FUNCTION (FIF)

Suppose we have a set of data points {(z;,t;) € I x K : j = 1,2,3...,n}, where
K is compact set in R, set I; = [z;, ;1] and I = [zy,x,],i € A. Let Ly : I — I,
be the contraction homeomorphism such that
Li(zq) =t;, Li(zp) = T4
Li(w) = Li(a)| < e — | (2.1)
Here 0 < [; < 1, Denote C = I x K, and Define n-1 continuous mappings
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F; : C — T satisfying the
E(xlatl) - t“E(fL’n,tn),Z € /\7 (22)
|Fi(x,y) — Fi(z,2)| < |oilly — 2|Vy,z € K,0 <|oy| < 1. (2.3)

Define w; : C' — I; x K such that w;(z,t) = (L;(x), Fi(z,t))Vi € A.

Then a unique attractor is generated by an IFS which is a graph G of a con-
tinuous function f' : I — K satisfying f (x;) = t;, i = 1,2,3...n.. This defined
function f is called fractal interpolation function (FIF) corresponding to an IFS.
Also FIF is given by an IFS in the following form:

{Ciw; = Li(z) = ;o + b, Fi(x,t) = o3t + ri(2) }. (2.4)

Here r; : I — R is a continuous function which satisfying above descriptions.
we take r;(z) as a quintic rational function in this paper which is continuous as
well as satisfying above descriptions.

3. CONSTRUCTION OF RQFIF

Let we have a {(z;,¢;),j € A'} given set of data s.t 71 < 7y < ... < T,.
Consider the IFS {I x K;w;(x,t) = (L;(x), Fi(z,t)) : i« = 1,...,n — 1} where
Li(z) = ayx + bi € J and F(z,t) = ot + ri(x), ri(x) = Iq% where p;(z) is a
quintic polynomial and ¢;(x) is a quadratic polynomial, ¢;(x) # 0Vx € [xy, z,,|. By
[3] integer |o;| < a¥,i=1,2...,n— 1. Let Fi(l)(x,d) = ”H;—fl)(x) and Fi(g)(x,D) =

(2)
oid+r; xr 1
- (z) where T’g )

: (x) and 7“@(2) (z) are the first and second derivatives of r;(x)
respéctively. Fy(z, o) satisfying the following C?-interpolatory conditions:

Fy(21,00) = t;, Fy(2n, 02) = tip1, F (21, dy) = diy FY (20, dy) = diga,

F* (21, Dy) = Dy, F? (2, D) = Diy1, (3.1)
where d; represent the first order derivative of o w.r.t x at knot x;.

In this section, the rational quintic fractal interpolation function is constructed.Let

we have a {(z;,t;),j € A'} given set of data s.t 1 < 73 < ... < z,,. Suppose
d; represent the first order derivative of o w.r.t x at knot ;. By considering the
proposition 2.1 with

Y(Li(x)) = opp(x) + ri(x) (3.2)

ri(x):#z;,ezz_%,l:xn—xl,xef (3.3)

pi(0) = iu —gy5igiu;

=0
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pi(0) = (1 —0)°Uy + (1 — 0)*0U, + (1 — 0)362U, + (1 — 0)%63U;
+(1 = 60)'0'Uy + 6°Us (3.4)

q:(0) = u;(1 — 0)* + v;(1 — )0 + w;H* (3.5)
and u;,v; and w; are the positive shape parameters. To shield that the fractal
function ¢ is C?-interpolant, we impose some interpolation properties:

D(Li(21)) = ti, ¥ (Li(wn)) = tipr, ¥V (Li(21)) = di,

V(Li(wn)) = disr, Y (Li(21)) = Dy P (Li(wg)) = Diga, i € A,
Put x = x; in equation (3.2) and(3.3) then we get

Up = ui(ti — oit1)

Uy = ugt], (3.6).
Put z = z,, in equation (3.3) then we get

Us = w;(tix1 — oity)

Us = wit},, (3.7).
Differentiate (3.2) to (3.5) w.r.t x then we get
U (Li(2)) Li(x) = o' (a) + 73(2) (3.8)
and / /
T;(ZE) _ Qz(9)pil((9[11(—9¢1)1j(29)P1(9)) (3.9)
pi(0) = =5(1 — 0)*Uy — 4(1 — 0)0U, + (1 — 0)*U, — 3(1 — 6)%6°U,
+2(1 = 020Uy + 3(1 — 0)20%Us + 2(1 — 0)'603U;
+4(1 — 0)'63U, — 01U, + 50*Us (3.10)
¢ (0) = —2u;(1 — 0)' + vy (1 — 0) — v,0 + 2w (3.11).

Put z = z; in equation (3.2) and (3.8) then we get
diailu? = oidllu? — 3Uyu; + Uyu; — v;Ug.
Put U, from (3.6)
Uy = a;l(ud; — o3dy) + (Bu; + ;) (t; — oity)
Ur = lugd; ) + (3u; + v)t] . (3.12)
Put x = z,, in equation (3.3) and (3.8)then we get
a;ld;yw? = oidplw? + (—Usw; + 5Usw; + v;Us — 2w;Us).
Put U; from (3.7)
Uy = wil(—a;di1 + 04dy) + (Bw; + v;) (tiy1 — oity)

U4 = —d;(+17nwil + (371)1 + Ui>t;<+1’n- (313)
Again differentiate (3.8) to (3.11) then we get
o' (Li(x)) Li(x) = o:¢)" (z) + 7] (x) (3.14)

and
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r;/ (I’) — b (9)(%’(9))2_‘11' (G)Pi(e)qg?;’izf)@';?)(%(9))2_2Pi(9)Qi(9)Qi(6) (315)
p; (0) = 20(1 — 0)3Uy + 12(1 — 0)20U, — 8(1 — 0)3U; — 12(1 — )20 U,

+6(1 — 0)102Uy + 2(1 — 0)3Uy + 6(1 — 0)20'Us — 12(1 — 0)'02Us + 263Us
+12(1 — 0)'02U, — 863U, + 2063Us (3.16)
4 (0) = 2(u; — v; + wy). (3.17)
Put x = z; in (3.14) to (3.17) then we have
a?D;l?u} = o;D a3 + (20U — 8U, + 2Us)u?
—(2u; — 2v; + 2w;)Ugu; + 2Up(4u? + v? — du,v;)
—2(=5Uy + Uy)(—2u; + v;)w;.
Put U, and U; from (3.6) and (3.12) then we get
Uy = 0.5w> D}y + (Bu; + 3v; + wy)ty, + 1d; (2u; + v;) (3.18).
Put z = z, in (3.14) to (3.17) implies
a?D; 1 1Pw} = o; D12} +{(2U3 —8U, +20Us )w? — (2u; — 2v;+ 2w; ) Usw; 4 2Us (dw? +
v? — dwv;) — 2(5U5 — Uy)(—2w; + vi)w; ).
Put U, and Us from (3.7) and (3.13) then we get

Ug = 0.5wil2D;*+17n + tf+17n(ui + 3Ui + 3’[01) — l(2’LUZ + Ui)d;?—s—l,n‘ (319)
From (3.6), (3.7), (3.12), (3.13), (3.18) and (3.19) we get
U() = Uit;:l

Ur = ludy ;) + (3u; + vi)t},
Uy = 0.5w> D}y + (3u; + 3v; + wy)t} ) + 1d; (2u; + v;)
Us = 0.5w;l>Dfyy ,, + (s + 3v; + 3wy) — 1(2w; + vi)dyy ,
Uy = —di,y wil + Bw; +vi) fiy
Us = wit] q -

Put the values of By, By, Bs, B3, By and Bs in (3.4) then we get
pi(0) =(1— 9)5uit21 +(1- 9)40luid;"’1 + (Bu; + vi)t;‘J

+(1 = 0)°6%0.5u,1* D + (3u; 4 3v; 4+ w; )ty + 1df (2u; + v;)
—|—(1 — 9)2630.5’LU112D;<+1,” + t;ﬁrl’n(ui + 3% + 3w2) — l(2wl + Ui)d;-k+17n
+(1 — 6’)194—d;-*+17nwil + Bw; +vi) fiyy ., + 95wit;‘+17n.

Remark 3.1. If the scaling factor o; = 0, the rational quintic fractal interpolation

function becomes the classical rational quintic function. ®(x) = % where

pi(a) = (1 —a)’Uy + (1 — a)*U, + (1 — a)3a®U, + (1 — a)?a’U,
+(1 — a)'a*U, + U
¢i(@) =u;(1 — a)* + (1 — a)a + wa?,

=TT e [z, %]
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with

U(; = u;t;,

U, = aglugd; + (3u; + vt

Uy = 0.5u;12 Dsa? + t(3u; + 3v; + w;) + ldsa; (2u; + v;)

Us = 0.5w;0%Diy1a? + tiypy (us 4+ 3v; + 3w;) — 1(2w; + v;)diy 10
U, = —aid;wil + (3w; + v;)ti

U5 = witiﬂ.

4. PosSITIVITY OF RQFIF

In this section, we obtained the sufficient conditionsfor the - rational quin-
tic fractal interpolation functions to preserve the positivity of the given set of
data.

Suppose (z;,t;),i = 1,2,3...,n be a given set of positive data. Let d; be the
derivative value at the knot z;. The RQFIF is positive if ¢)(z) > 0 for all z €
(21, 2]

Let o; > 0Vi = 1,2,3...n. Also uw; > 0,v; > 0 and w; > 0 gives ¢;(6) > 0. So
W(Li(x)) > 0Vi=1,2,3...n, if p;(d) > 0. Now we have,

pi(0) = (1 —0)°Uy + (1 — 0)*0U, + (1 — 0)362Uy + (1 — 0)%63U;
+(1 —0)'01U, + 6°U;
pi(0) >0if Uy > 0,U; > 0,Uy > 0,U3 > 0,U; >0,U5 >0
we get
Up > 0if 0; < & and Us > 0 if o; < %22,

Uy >0ifv; > ﬂgfil,
For 3t7, +1d;; > 0,U, > 0 if v; > W}
For 3t} + Id;; < 0,Us > 0 if v; < %,
e 003011 < S B 1, g1,

From the above results, it is clear that ¢(L;(z)) > 0foralli =1,2,3,...,n.
The above result discussion is summarized in the following theorem.

Theorem 4.1. The sufficient conditions for the C? rational quintic fractal interpo-
lation function to preserve the positive shape of data if in each subinterval shape
parameters u;, v;, w; satisfy the following constraints:
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; ti titl
0 < o; < min{a;, i
u; > 0,w; > 0,
Vi > ma${0>?11,z’7?12,i7U3,i,U4,i}

where
V1, = =, U2; = : —,
R 223ty + ldyy)
wil(4df+1 n — D n) wildyy ,
V3, = — — Uy = ——,
2(3ti+1,n - ldi—l—l,n) ti—l—l,n

foralli=1,2,3...n.

5. MONOTONICITY OF RQFIF

In this section, we have presented the monotonicity conditions for the C?-
rational quintic fractal interpolation functions. Suppose {(x;,¢;),7 = 1,2,3...,n}
be a given set of positive data. Let d; be the derivative value at the knot z;.
Without loss of generality let the data be the monotonically increasing i.e, t; <
ty < ...t,. Then ﬁ% > 0,Vi = 1,2...n. ¢ is monotonically increasing in [z}, 2,

if ¢’ (z) > OVz € [x1,2,). We have,
=1 a0 (1-0)"

¥ (Lile)) = 01/ (@) + == (5.1
where

Fi; = a;U; — (3u; +v;) Uy

Fy; = 2u;Uy — 20,U; — (4v; + 2w;) Uy

F3; = (v; — u;)Us + 3u;Us — bw; Uy — (3v; + w;)Uy

Fy; = 2v;Us + 4u; Uy — 40;Us — 4w;Uy

Fs; = (u; + 3v;)Uy + 5u;Us — 3w;Us + (—v; + w;)Us

Fsi = 2w,Uy + (4v; + 2u;)Us — 2w,;Us

Fri = (vi + 3w;)Us — w;Uy.
Let 0; > 0V i=1,2,3...n. It can be seen that (¢;(0))? > 0. Therefore ' (L;(z)) >
0,if 31—y Fa’='(1—6)"~7 >0,

S FaT (1= 0)7 > 0if Fyy > 0V = 1,2,3,4,5,6,7.
We have

Fi;>0ifo; < aéfi,in > 0ifo; < aizllﬁ-

n

Now consider
Foy = Fri+ ul(df (u; + 2v;) + wil Dy ).
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If D}, = a?D; — 0;D; > 0, then it is clear that F;; > 0. Otherwise choose the

parameter v; > % and so, I, ; > 0, provided that d;, > 0.
Similarly, con51der
Foi = Fri+wil(d]yy,(wi +2v;) —wil D}y ).
If D;,,, = a;Di1 — 0;D,, > 0, then it is clear that F; > 0. Otherwise choose

i D

Iw
the parameter v; > T e Fs; > 0, provided that df_, ,, > 0. Now take
i+1,n

Fs; = (9wiui+9vluz+3ui)(tal’n—t;l)+3uil(0.5wilDf+1 n— Qwi+v;)d;, 1)
F3; > 0ifo; < (tiy1 —t1)/(tn — t1),

and ) o
s = man (g ) Ry,
Now take
F i = (wiu; +9vsw; 4+ 3wy ) (t5,, ,, — ) + 3wl (—0.5u,l D}y — (2u; +v;)d; )
Hl(w; — v)(0.5w;l D}y, — (2w; + v3)dy ) — lwi(Bu; + wi)dyy )
F5,>0ifo; < (tizn —t1)/(tn — 1),
and )
v 2 mmane{ —H et (Sl
Now take
Fyi = (12w;u; + 6vw; + 6uv; + 32}?)(25:-‘“@ —t7)
+Uil(_uilDZ1 — (2u; + vy) :1) + lvi(wilDfH,n — (2w; + Uz)dz+1 ")
_4lwiui(d:+1,n + d;ﬂ
Fii>0ifo; < (tigr —t1)/(tn — t1),
and

ID*,,  —4d*., ) —u;i(IDF,+4d* )
,UZ Z maX{(_wZ i+1,n i+1,n 7 7,1 7,1 }

2d31 1 ’ 2d7

From the above results, it is clear that ¢/’ (z) > 0 foralli =1,2,3,...,n
The above result discussion is summarized in the following theorem.

Theorem 5.1. The sufficient conditions for the C? rational quintic fractal inter-
polation function to preserve the monotonicity of data if in each subinterval shape
parameters u;, v;, w; satisfy the following constraints:
: idz az 7 tz t
O S O-Z' < mln{a17 adl 9 n+1’ t:lftll}
U; 2 07 Wy Z OJ

and v; > max{0, v(i2), v(i3, )V(i4), V(i5), Vis }, Where
—lu; D}, —wi(ID}, ,—Adl, ) —ui(ID}, +4d ;)

v(ig) = del’ ) U(i3) = max{ 247, ) 2&;"1 1
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—w;(ID},; ,,—4d, | ) —ui(ZD;71+4d;1)}
Y

v(is) = max{

2df+1,n ’ 2dZ,1
i ) _ max{ —wi(1D7 ,—4d7 ) Ui(lDf,1+4df+1,n)} - —lwiDf )
(%5 25,1, T 2dn,, Vs T T

i=1,2,3..n.

6. CONCLUSION

In this paper, the C?- rational quintic fractal interpolation functions having
the three shape parameters is constructed. The constructed RQFIF can be used
to preserve the shapes of the given data. The sufficient positive shape preser-
vation conditions for RQFIF are developed in this paper. Further the sufficient
monotonicity preserving conditions for RQFIF are developed. The RQFIF be-
comes the classical rational quantic interpolant if we take scaling factor is zero.
This developed RQFIF can be used in various fields of visualization of data.
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