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CONSTRAINED SHAPE PRESERVING RATIONAL QUINTIC FRACTAL
INTERPOLATION FUNCTIONS

SNEHA! AND KULDIP KATIYAR

ABSTRACT. In this study, we define C5- rational quintic FIF with the three shape
parameters and discuss the constrained nature of given set of data. The devel-
oped RQFIF is a generalised fractal form of the classical rational quintic function
of the form %. The RQFIF involves the three shape parameters and a vertical
scaling factor in each sub-interval. We drive the sufficient conditions on the
shape parameters and the vertical scaling factor associated with C?RQFIF for
the constrained type of data.

1. INTRODUCTION

Fractal interpolation is the modern method to analyse scientific data. In some
cases, the classical interpolation is not valid so we used the interpolation meth-
ods for analyzation. Classical interpolants are not valid to describe the irregular
shape of data so for this we describe the irregular shapes by using the interpo-
lation schemes. Interpolation is used in various fields like in physics, geology,
economics, computer graphics etc. fractal interpolation is one of the application
parts of the IFS theory which gives the new research methods in different fields.
In computer graphics, fractal interpolation methods give an option for catching
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the data in self similarity designs at any dimension of magnification. The un-
smooth items such as clouds, coastlines, woodland skyline etc are represented
by the FIF.

Barnsley [6] introduced the FIFs by using the IFS theory. FIF’s points gen-
erally at data which extant details at the various scales or certain degree of
self-similarity. An attractor of an IFS is a graph of the approximated functions.
Barnsley and Harrington [7] presented the differentiable FIF through a fixed
type of boundary conditions in constructive manner. This gives the connection
between the classical type functions and fractal functions. Barnsley [3] con-
structed the C™ FIF’s from the n+1 degree polynomials which provide some
algebraic twists.

The emphasis of interpolation is to develop continuous function that fits the
given data set got by experimentation or sampling. In any case, to get a effec-
tive physical interpretation of basic procedure, it is essential to create interpo-
lation arrangements that acquire firm properties from the recommended given
data set. It has been found that it is difficult for classical splines to specify the
boundary conditions. Malik, Maria and Zahra [10] introduced the new class
of C? rational quintic function with the three shape parameters for the curve
design.Chand et al. [4, 5] introduced the spline FIF in constructive way with
the general boundary conditions. The advantage of this spline FIF is that the
choice of differentiable C”-FIF’s of certain order can be used to describe the
flexibility. Chand [5] introduced the shape preservation of data points for C'-
cubic fractal spline. Vijender introduced the shape preservation of the rational
fractal interpolation functions without using the shape parameters to preserve
the constrained data for the first time [12]. Chand et al[13][14] introduced the
rational cubic spline FIF involving the shape parameters for the first time in lit-
erature. Appropriate conditions on parameters of associated IFS are established
so that rational cubic fractal interpolant gets the fundamental shape properties
present in the given data set. Chand [13] introduced the rational cubic spline
fractal interpolation over classical interpolation by preserve the shape parame-
ters.Further development on the different type of rational fractal interpolation
functions can be seen in Prasad et al. [17] used quadratic trigonometric fractal
interpolation function for approximating given data. Thus, the method of ap-
proximation by smooth FIFs and their various extensions in the form of fractal
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interpolation surfaces, coalescence hidden variable FIFs etc have been exten-
sively studied in the literature (see [16,18,19,20,21]) for define the C? shape
preserving interpolants, we have to generate the derivatives at knots by using
the fixed values. From the hermite type of data, the C? type interpolants may not
be generated. Thus, to avoid these problems we have introduced new kind of
C? rational quintic fractal function with three free parameters. Abbas [25] pre-
sented the shape preserving piecewise rational cubic interpolation constrained
data by using the spline functions. Duan [26] introduced the new class of C?
rational interpolation which is centered on the function values and constrained
control of the inerpolant curves.

The aim of this paper is to establish the monotonicity conditions of the given
set of data for C? rational quintic FIF’s with three free parameters and express
its advantages over corresponding classical rational quintic function.

In section 2 of the paper the introduction and basics of the FIF’s are reviewed.
In the section 3, we discussed construction of the C? rational quintic fractal
interpolation function. In section 4 we developed the sufficient conditions for
the constrained type of data.

2. THEORY OF FRACTAL INTERPOLATION FUNCTION

Here, we discuss basics of theFIF’s established on IFS theory and their ap-
proaches.

Let w; : Y — Y, (Y,dy) is a complete metric space, i € A be continuous
functions where A := {1,2,...,m — 1}.Then IFS is represented as/ = {Y;w;,i €
A}.1is known as a hyperbolic IFS if each w;, i € A is a contraction map(say)
with the contractive factors;.

Then 3 natural metric called the Hausdorff metric which completes H(Y)
where H(Y) be set of all non-empty compact subsets of Y. The Hausdorff metric
H(Y) is defined by

dCH(Y))(A, B) = max{Ds(A), Da(B)},
where Dp(A) = max,c4 minge g dy (a, b). The Hutchinson map Jon H(Y)associated
with the IFS defined by J(A) = U} 'w;(A)for all A € H(Y).J is contraction map
on H(Y) with contractive factor s = max{s; : i = 1,2,...,m — 1} if IFS I is
hyperbolic. Phas a unique fixed point (say) Gby using Banach fixed point theo-
rem such that for any A € H(Y), lim,,_,,, W™ (A) = G, and the limit is taken
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w.r.t the H(Y). The fixed point G is known as attractor or deterministic fractal
corresponding to the hyperbolic IFS.

Let P : {x1,x2...,x,, } be a partition of the real compact interval I = [z1,x,,],
wherez; < 29 < ... < Z)p,.

Let a set of data points {(z;, f;) € [ x K : j = 1,2,3....,m}be given, where K
is compact set in R. Set I; = [z;, x(i + ¢)]andL; : I — I;,i € A be the contractive
homeomorphisms such that L;(x1) = (i), L;(2,,) = 211 fori € A,

|Li(x) — Li(z")| < li|z — 2'|Vz,2" € I for some 0 < I; < 1. (2.1)
Denote C' = I x K, and Definem — 1 continuous mappings F; : C' — T satis-
fying the
Fi(z1, f1) = fi, Fi(xp, fm), 1 € A, (2.2)
|Fi(e,y) — Fi(a, )] < [8illy — €19y, = € K,0 < [5)] < 1. 2.3)
Now, define the functions w; : C' — I;x K such that w;(x, f) = (L;(z), F;(z, f))Vi €
.

Proposition 2.1. AnIFS I* := {C;w;,i = 1,2,3.....m — 1} admits a unique attrac-
tor G such that G is graph of a continuous functionf : I — K which obeysf (z;) =
fri=123..m

The above defined function f  is called fractal interpolation function corre-
sponding to IFS{I x K;w;(x,f) = (Li(x), Fi(z,f)) : i = 1,...,m — 1}. The
construction of f* is established on the following results:

Suppose G = {g : I — R|g is continuous, g(z;) = fiand g(x,) = f.}. Then
(G,d,) is a complete metric space with respect to metric d, is induced from the
supremum norm on the C(I). Define the Read-Bajraktarevic operator Ton (G, d,,)
as
Tg(z) = Fi(L;*(z), 9(L; (x)),x € L;,i € A. (2.4)

According to the (2.1) and (2.2), Tg is continuous on /; = [x;, z;+1],i € A and
at each of the pointsxs...., z,,_Further, T is contraction map on the complete
metric (G, d,), that is,

A(T$.Tg) = ITf = Tgllwo < 8]l . 9) (2.5)
where |0, = max{|d;| : i € A}. T possesses a unique fixed point (say) f’
on G, i.e., f € Gsuch that (T'f')(z) = f'(z)Vz € I. According to (2.4), the
FIF f'satisfies the following functional equation:
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f(x) = F(L7 (), f o L7*(2)),x € I;,i € A. (2.6)

(2

The following popular IFS is widely held to define FIF:
{Cswi(z, f) = (Li(z), Fi(z, f)),i =1,2,..m — 1},
where
Li(x) = ajx + b;, Fi(x, f) = 0;f + si(x) with s; : I — R (2.7)
are appropriate continuous functions such that (2.2-2.3) are satisfied. The 9; is
called the scaling factor of the transformation w;, and § = (d1, 0o, ....0,,_1)is the
scale vector of the IFS.In this study, we take s;(z) as a quintic rational function.

Theorem 2.1. (Barnsley and Harrington, [3]) Suppose {(z;, f;) : j = 1,2,...m}
be the prescribed set of the interpolation data, where ti,ts,..., t,. Let L;(z) =
a;x + bii € J satisfy (2.1) and Fi(x, f) = 0;f + si(x),si(x) = ’q)zgg,pz(x) and
¢i(x)are suitable chosen polynomials in x of degree 1, s respectively and ¢;(x) #

OVz € [21, Ty Assume that for somep > 0,p € Z|6;| < af,i € A Let Fii,n)(z, f) =

(n) ") (p
5f+s 9, f Ln = g7 _f;i) Smn = H, n =1,2...,p, where s!(z) represent
the n-th derivative of s;(x)with respect to x. If F"(xp, fmn) = Fiii(z1, f1.) for
=23,..m—2and n = 1,2,...,p, then the IFS {C; (L;(z), Fi(x, f)) : i =

1, 2,...,m—1} determines a rational FIF o € C?(I), such that o(L;(x)) = 6;0(x)+
si(z)ando™ is the FIF determined by {C; (L;(z), Fii,n)(x, f)) :i=1,2...,m—1}
forn=1,2,...,p

Based on this theorem many scientists have built the FIF’s and splines which
consider as a special case of fractal spline when «; = 0Vi € J. Therefor the con-
cept of FIF gives inclusive range of interpolations plans varying from nowhere
differentiable interpolants to infinitely differentiable interpolants such as poly-
nomials. Since the graph G of FIF is a union of transformed duplicates of itself,
i.e., G = wi(G), other name for a fractal function could be a self-referential
function.

3. CONSTRUCTION OF C? RATIONAL QUINTIC FIF

In this study, we take C?as a rational quintic fractal interpolation function hav-
ing three free parameters.In this,we build the RQFIF o with three shape param-
eters in each subinterval with the help of Theorem 2.1. Suppose {(z;, f;).J €
A’} be a given set of interpolation data for an original function o such that
x1 < Ty < .... < x,. Consider the IFS{I x K;w;(x, f) = (L;(x), Fi(z, f)) : i =
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1,...,m—1} where L;(z) = a;z + bii € J and Fy(x, f) = 6, f + si(x), s:(x) = 242
where p;(z) is a quantic polynomial and ¢;(z) is a quadratic polynomial, ¢;(z) #
OVx € [z1,%,]. By using the Theorem 2.1 integer |0;| < af,i = 1,2....,m — 1.
LetF!) (z,d) = 245°@ and F®)(z D) = wheres\ (x) and s (z)are the first
and second derivatives of si(z) respectively. F;(x,o) satisfying the following
C?-interpolatory conditions:

Fi('rl’ Ul) fla (‘Tma Um) fl+1a Fz'(l)(wh dl) = di’ Fz‘(l)(xm dn) = di+1)

FY (@0, dy) = dit1, FP(z1, D1) = D;, F® (2, D)) = Dij1, (3.1)
where d; represent the first order derivative of ¢ w.r.t x at knot z;. From (2.7)
one can observe that our RQFIF ¢ can be written as:

o(Li(z)) = do(x) + s;(x) (3.2)
where o(L;(z))is the rational quintic fractal interpolation function with vertical
scaling factor where is the rational quintic function defined as:

si(x) = g;gg;, 0= =u, —a,z€l, (3.3)

pi(0) = 2(1—9)(5—2)913
) =

pi(0 ( 0)Bo + (1 — 0)40B; + (1 — 0)30B, + (1 — 0)20°B;
+(1—6)'0*B, + 6°B; (3.4
¢i(0) = ai(1 = 0)? + B;(1 — 0)6 + ~,6 (3.5)

and «;, v;and 3; are positive shape parameters. To shield that the fractal function
o is C*-interpolant, we impose some interpolation properties:

o(Li(x1)) = fi,o(Li(zm)) = firr, 0 (Li(21)) = di, oW (Li(w)) = dip,

oD (Li(z1)) = Dy, 0P (Li(2,,)) = Dij1,i € A.
Put x = x; in equation (3.2) and(3.3) then we have § = 0 and s;(z1) = Zggg
o(Li(x1)) = dio(x1) + si(x1),

= fi=0f1+ %

= fi=0 1+

= By = a;f; — dificv

= By = a(fi — 0if1)

= By = a; f}. (3.6)
Put x = z,, in equation (3.3) then we have § = 1 and s;(z,,) = Z(l) and
o(Li(x)) = 6i0(xm) + si(2)

= fix1 = 0ifm + 2 _3

= fix1 = 0ifm +
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= Bs = Yifis1 — 0ifm i
= By = %’(fz’+1 - 5z‘fm>

= Bs =7ifl1m 3.7)
Differentiate (3.2) to (3.5) w.r.t x then we get
o (Li(2))L;(z) = 6;0 () + s5(2) (3.8)
and
() = z(q)m %Z)g@p,( ) (3.9)

(0) = —5(1—-0)"By —4(1 — 0)30B; + (1 — 0)*B; — 3(1 — 0)26*B,
(1 0)30' By + 3(1 — 0)260*Bs + 2(1 — 0)'0° B3
4(1 - 0)'03B, — 0*B, + 50*B; (3.10)
Qi(e) = —20;(1 = 0)" + Bi(1 = 0) — 3,0 + 270 (3.11)
Put x = z; in equation (3.2) and (3.8) then we have # = 0 and
o' (Li(1)) Li(1) = 60 (1) + 5;(21)
= il = Gy + HOO-L OO
= d;a;l = 0yl + 2L Bo(2art )
= diala? = 6;dyla? + (—5Boa; + By + 2Boa; — B:Bo)
= d;a;la? = ;dila? — 3Bya; + Bia; — 3 Bo.
Put B, from (3.6),
= di@ila? = 5id1l0422 - 304i(ai(fi - 5z’f1) + Bioy; — @(%(fz - 5if1))
= dia;lad = 0;dylaf — 30 f; + 3030 [1 + Bioy — Bioy fi + Bicidi fi
eliminate o
= dia;la; = 6;dyloy — 3oy fi + 30 0; f1 + By — Bifi + Bidifa
= By = dia;la; — 8;diloy + 3oy f; — 300, f1 + By + Bifi — Bidi 1
= By = ayl(a;d; — 6;dy) + (Bay + Bi)(fi — 0if1)
= B = la;d;; + (3aq + B;) f14 (3.12)
Put x = z,, in equation (3.3) and (3.8) then we have = 1,
o' (L) L) = 8,0 (2) + ()
S s = Gy + BB -G On)
= a;ld; 177 = 0idply; + (—Bavi + 5Bs7; + BiBs — 27;Bs)
Put Bs from (3.7)
= aildip1Y] = 0idinlV} + (=Bayi + 5%(vi(fina
—0ifm) + Bi(vi(firr — 0ifm)) — 2vi(vi(fix1 — 6ifm))
eliminate ~;
= By = vil(—aidig1 + 0idp) + (37 + Bi) (fixr — 0ifm)
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= By = —dj il + By + Bi) fiim (3.13)
Again differentiate (3.8) to (3.11) then we get

o' (Li(z))Ly(x) = 6,0 (2) + 5, (2) (3.14)
and . . , o

s(z) = b (0)(ai(0)*—q; (9)1%(G)qz‘l(f()quez;z')(g@)(qi(9))2—2101-(9)111-(9)%(9) (3.15)

p; (0) =20(1 — 0)>By + 12(1 — 0)%0B; — 8(1 — 0)>B; — 12(1 — 0)*0' B,
+6(1 —0)162By +2(1 — 0)*By + 6(1 — 6)20* By — 12(1 — 6162 B; + 26° By
+12(1 — 0)'6? B, — 803 B4 + 200°B; (3.16)
q; (0) = 2(c; = B; + i), (3.17)
put z = z; = # = 0 and equation (3.14) to (3.17) implies
0" (Li(w1) Ly(21) = 6i0” (1) + 5 (1) / o
= a2D; = §;D; + 1 (0)(4i(0))*—g; (0)pi(0)4i (0)+2pi(0)(g;(0))*—2p;(0)g; (0)g: (0)

12(¢:(0))°
= CL?D,L'FOZ? = (SiDlpOé? + {(2030 — 831 + 232)0412 — (20&2 — 251 + 2’)@)800{1

+2B,(4a? + B2 — 4a;3;) — 2(—5By + B1)(—2; + Bi)a ).
Put By and B; from (3.6) and (3.12) then we get
By = 0.50;1*D;a? — 0.50;126; D1 + f;(3a; + 36; + i) — f1(3cu + 36i + 7:)d;
+ld;a;( 20y + Bi) — ldi(2a; + 5;)0;
By = 0.5051* Dy 4 (3ai; + 36; + i) f1 + 1d} (20 + fi). (3.18)
Put z = z,, = 0 = 1 and equation (3.14) to (3.17) implies
0" (Li(xm)) Li(xm) = 5}/0” (€m) + 57 (Tm)
= 2Diyy = 6,Dyy + PL@W) Za (i) ()20 (1(0; ()22, (g (i (1)

1?(q:i(1))?

+2B5 (497 + 87 — 47i8;) — 2(5B5 — Ba) (=27 + Bi)vi}-
Put B, and Bs from (3.7) and (3.13) then we get
= B3 = 0.5v,0°D;y1a7 — 0.5v,0%6; Dy, + fi1(cu + 36; 4+ 37:)
— fm(i + 38i + 37:)0; — ldm(2vi + B8:)6i) — ldiv10:(27i + Bi)
= B3 = 0.5v?D;1a? — 0.571%6; Dy + (fiz1 — 05 fm) (i + 38 + 3v:)
—1(2v; + Bi)(0;dpm + dijr10;)
= By = 0.5%* D}y + i1 (i + 38 + 3v) — 1(2% + Bi)d}yy e (3.19)
From (3.6), (3.7), (3.12), (3.13), (3.18) and (3.19) we get
By = Oéif;:l
By = loyd;y + (B + Bi) 4
By = 0.5040* Dy 4 (3a; + 36; + i) f1 + 1d} (20 + fy)
B; = 0.5%l2Df+1?m + iil,m(ai +38; + 3v:) — 1(2v; + /Bi)d;“ﬂjm
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By = —di vl + (3 + Bi) fiim
Bs = %fz’il,m-
Put the values of By, By, Bo, B3, By and Bs in (3.4) then we get
pi(0) = (1 = 0)°auf 4+ (1 — 0)*0laydy, + (3cs + Bi) f)
+(1 = 0)°60%0.50;1>D; 1q + (3o + 305 + ) fi + 1d} 1 (20; + y)
+(1 - 9)2930-5%l2D:+1 m T f1*+1 m (i + 3B + 3v)
_Z(Q%' + 5i)d2<+1,m ( 9) 94 - aldz—i—l m%l + (3%‘ + Bi)fz?:-l,m + 95%f;i|-1,m'
In most of the cases, the derivatives are not given so they must be calculated
by the some numerical data or from the given data. In this, we use the arithmetic
mean method to approximate these values [2].

Remark 3.1. Ify; = 0, the RQFIF becomes the classical rational quintic function
Z(z) = pZ(tg where
pi(t) = (1—t)° By+(1—t)*0B; +(1—t)*t* By+(1—1)*t* By +(1—t)'t* B, +t° B,
¢(t) = (1 —1)* + Bi(1 — t)t + vit?,

T—x;
Tip1 =i’

= T € [x;, Ti]
with
;i fis
= layd; + (3o + Bi) [
= 0.50;1*D; + fi(3a; 4+ 36; + i) + ld;a;(20; + ;)
= 0.57%0*Di1 + fir1(ci + 36 +3v) — 12y + Bi)dis1ai
= —di1vil + (37 + Bi) fina
= Yi fir1-

cnb:j\ upd\ wm\ mbd\ »PJ\ om\

4. SUFFICIENT CONDITIONS FOR CONSTRAINED C?- RATIONAL
QUINTIC FRACTAL INTERPOLATION FUNCTIONS

In this section, we discuss the build a constrained FIF whose graph lies above
the straight line L for the positive interpolation data. Let a set of data points
{(zj, f;) + 7 = 1,2,3....,m} be given and lie above the straight line L, where
f; > 0vj. Because of the arbitrary choice of the IFS parameters, a RQFIF may
not be lie above the straight line L. To preserve the shape of the constrained
data, we derive sufficient conditions on the three shape parameters and the
vertical scaling factor. In this, we have presented the sufficient conditions for
the constrained C?-rational quintic fractal interpolation functions.
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Theorem 4.1. Let o be the RQFIF (3.2) defined over the interval [x1, x,,] forgiven
data {(z;,f;) : j = 1,2,3,...,m}. Let the data lie above the straight line L :
z = mx + c where f; > 0Vj = 1,2,...m and z(L;(z)) = 7;(1 — 0) + w,0 is the
parametric form of L on [z, x,,]. Then the RQFIF ¢ lies above the straight line L if
the following conditions are hold for all i € A :
1. The scaling factors are chosen, s.t.,

8; €{([0,¢] if & € a?, and 6; € [0,a?) if a? € €)}, (4.1)

2 aifi—mi 6fi—wi 6fixim—Ti vifit1—wi
a;ft 7 6f1 6fm ’ Yifm

where ¢; = min{a;, 5 o= mx; + cand w; =
mx;y1 + C.
2. The shape parameters are chosen, s.t.,

ld'L m .
Q; 2> L lfDH—lm > O7d:+1,m > 0’

z+1 m

Z’W z+1m ;. ES .
@ 2 g Sl Diim < 0,diy i <0,

; > 0 otherwise, 4.2)
Where :* = max{l, =} lfDZJrl m > 0, where = = (v; + i),

lal —lagdi
Bi 5 if diy

l’h _ it lm
if dr
? T, o —Wi) f i+1,m =

(i m—wi)
0 otherwise; (4.3)

| \/

&

v I\/

&

1

and

ij,f 1 ifdy, < 0,Df, > 0;

i = S if D}y < 0,d, 2 0;
vi >0 otherWlse, (4.4)

where £* = max{1, £}if D}, > Owhere £ = (o; + 3).

\/

Vi

| \/

Proof. Let a set of data points {(z;, f;) : j = 1,2,3....,m}be given and lie above
the straight line L:z=mx+c, z € I, ie., f; > mx; + Vi = 1,2,...m. Now
parametric form of straight line L id defined as:

ALi(x)) = m(Li(x)) + ¢ = 7i(1 = 0) + wi, (4.5)
where L;(z) = a;x + b; with a; = T5=5 and b, = ==, = &0

Ty —x1. Atz = 21,7, = 2; = mx; + cand at © = x,,, w; = 2,41 = mx;41 + c.Thus
the given RQFTIF lies above the straight line L if

o(Li(z)) > 2(Li(x))Va € [x1, 2]
From (3.2) and (4.5), in parametric form is expressed as:

= ;o(x) + ]Z% —7i(1—0) +wif >0,
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= di0(x) + 25 > 0, (4.6)
pi(0) = (1-0)°B;+(1-0)'0B;+ (1—-0)30*B; + (1 —0)?0°B; + (1 —-0)'0*B; +6° Bz,
with

Bi=DB,—

Bf = By — 51, —w;a; + 301 — BiTi

By = By — 107; — 2w;a; + 9oy — 281 — wiBi — Tivi

B; = By — 10w; — 27,7 + Yoyw; — 2B,w; — wia; — 7,3

B} = By — bw; + 3viw; — wili — 7

B = Bs — w;.
Clearly the shape parameters «;, 3;,v; > 0 provide the denominator in (4.2) is

positive. Thus the RQFIF preserves the constrained aspects if the numerator is
positive, i.e., pf(¢) > 0,

pi(0) > 0ifB; > 0,B; >0,B; >0,B; >0,B >0,andB; > 0,i € A.
Now

Bi =B, —7i=ifiy —Ti= i fi —i0ifi — i 2 00f fo; < aC{—fT
Similarly,

Bf = Bs —wi = Yif{1m — Wi = Yifir1 — %i0ifm —wi = 0if fo; < W
Now consider,

B} = By — 57, —wia; + 3oy — BiT;

BY = (ff1 — 7) (=3 + Bi) + (6 f — agw;) — 573 + laydy ;.
If df, > 0 then the arbitrary «;, 3;, > 0 and

(6aiff) — qw;) > 0= 0; < %T—l“’
provide Bf > 0 as ¢; < ‘“C{Z—f_f Otherwise we can choose 3; >
of Bf > 0.

Similarly consider

—lod} .
L for validity
7

f;l_T

B} = By — bw; + 3viw; — wiBi — Tivi
By = (fii1m —wi) (=37 + Bi) + (6% ff 1 m — %imi) — dwi — 1vid g -
If dj,,,, < 0 then the arbitrary ~;, 3; > 0 and

* 6fz ,m 11
(67 f 1 m — %iTi) 2 0 = 0; < =g

provide B > 0 as 9; < ”;*#w Otherwise we can choose 3; > %
validity of B; > 0. Now take
B3 = By — 107; — 2w;o; + 90,13 — 28,1 — wili — Ty
By = (ff — wi +1d;1) (206 + Bi) + (ffy — 7)(cu + 28; + i) — 107
+10c;7; + %O@Dzl.

for
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If df; > 0 and D7, > 0 then any choice of a;, 5;,> 0 and ~; > OgivesB; > 0
due to earlier assumptions on ;.

If di, > 0 and D}, < 0 then we can choose v; > _( 207, 1_1 L for validity of B; > 0
as
B laldz 1

*Tz)

We can erte
B; = By + (Biffy + 6cim; — 51 — wi(ai + B;)) + ((f71 — ) (Bi + %)
+df (o + B) + 5w D}y
Since for df, < 0, B} > 0 for ; > %, for B; > 0,

1. Choose ~; > % , £* = max{1, £} if D}, > 0 where £ = (a; + /3;),
i,1 T
2. Choose v; > (lfa—T ifD}, < 0.
i,1 'b
Finally,
B; = Bg — 106&.)@ — 2’}/17'1 -+ 9061‘&)@' — 2510% — W;; — Tiﬁi
By = (fim — 7 — ldiy )2y + Bi) + (ffi1m — wi) (i +26; +93) — 10w;

+107vw; + 271D:<+1 m*
If divim <0 and Dy >0 then any choice of «;, 5;,> 0 and 7; > 0 gives
Bj > 0 due to earlier assumptions on ;.

12y, D}
Ifd;,,,, <0and Dj,, <0 then we can choose a; > # for validity
of Bf >0 as
l’yz i+1,m
/82 - 7*+1 m wz)

We can write
By = Bi + (Biffi1m + 6viws — dwi — 7i(vi + Bi)) + (fi1m — wi) (Bi + ai)
_ld:‘—&—l,m(/yi + 61)) + %’yiD;k—l—l,m'

lyid;
Since for d},, ,,, > 0, B} > 0 for 3; > # for By >0,

i+t1,m Y ),

1. Choose «; > M, == max{l, 2} if Dy, ,, > 0, where Z = (v; + ),

'L+1 m w
2. Choose «; > 2(17% itD}, ,,, <0O.
i+1,m 7~
Combining all the cases, thr RQFIF lies above the straight line if (4.1)-(4.4)

holds Vi € A. O

Corollary 4.1. If 7, = 0 and w; = 0, then the RQFIF o is positive if the following
conditions are satisfied Vi € A:
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1. The scaling factors are chosen, s.t., 6; € {([0,¢] if &; € a? and ¢; € [0, a?) if
2 aifi 6fi 6fix1m 'Yifi+1}
i aifi’ 6f1° 6fm O Yifm 1"
2. The shape parameters are chosen, s.t.,
ldr, = ) 2y.Dr .
- Qy 2 }i’lm lfDH-lm 2 0dz+1m > OJ Q; Z Tl-:lfpz—i-lm
0,d}\ 1., <0; a; >0, otherwise.

a? € €;)}, where ¢; = min{a

- Bi > lal = ifdiy < 0; 8 > Didisrm ifd,Hm > 0; B; > 0, otherwise; and
"7 > 2f* = if dsy < 0,05, > 0, Vi > ’;}1 Lf Dy < 0,d8, > 05 > 0,
otherwise.

5. CONCLUSION

In this study, we have constructed C?-rational quintic fractal interpolation
functions having the six shape parameters and three free parameters. The C?-
rational quintic fractal interpolation function become the classical rational quan-
tic function if the scaling factor become zero. In this paper, we have derive the
sufficient conditions on the IFS parameters to preserve the constrained data type
function in such a way that the RQFIF lie above the straight line L. By perturbing
the scaling factors and the shape parameters, shape of the curve can be modified
according to desire. Therefore, the constructed FIF has more influence on shape
preserving problem.
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