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A COMMON FIXED POINT THEOREM IN NON-ARCHIMEDEAN MENGER
PROBABILITISTIC METRIC SPACE

RIA SHARMA1 AND ARUN KUMAR GARG

ABSTRACT. We demonstrated the presence of normal fixed point hypotheses
in Non-Archimedean Menger Probabilistic Metric Space utilizing the R-weakly
commuting maps. The presented theorem extends some already known results
of literature [1, 2].

1. INTRODUCTION

In 1942 Menger [3] presented the idea ofprobabilistic metric spaces (quickly,
PM-spaces) as a generalization of a metric space which prompts the examina-
tion of physical quantities and probabilistic functions. Istratescu and Crivat [4]
had characterized the Non-Archimedean (quickly, N.A) PM-space and clarified
essential topological basics of N.A Menger PM-space in [4]. Istratescu et al.
demonstrated the presence of fixed point of contractive maps in N.A Menger
PM-space in [4, 5] which was the generalization of the existing. In 1994, Pant
[6] presented the idea of R-weakly commuting maps in metric spaces. Vasuki [7]
explained some common fixed point theorems for R-weakly commuting maps in
fuzzy metric spaces. The motive of the presented paper is to prove the existence
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of common fixed point theorem in N.A Menger PM-spaces Space utilizing the R-
weakly commuting maps. We generalized the result of K.P.R. Sastry, G.A. Naidu,
I. Laxmi Gayatri and S.S.A. Sastri [2] to prove our result.

2. PRELIMINARIES

The succeed classifications and consequences will be used subsequently.

Definition 2.1. ([8]) Let X be any non-empty set and the arrangement of all left
continuous distribution functions be indicated as D. A pair (X, θ) is characterized
to be the N.A.PM-space, if ∅ is a mapping from X×X → D fulfil the accompanying
conditions:

(i) θx,y (τi) = 1∀τ > 0 if and only if x = y;
(ii) θx,y(τ) = θy,x (τi);
(iii) θx,y(0) = 0;
(iv) If θx,y (τ1) = θy,z (τ2) = 1, then θx,z (max {τ1, τ2})) = 1.

Definition 2.2. ([8,9]) If θx,z (max {τ1, τ2}) ≥ θxy (τ1) δθy,z (τ2)∀x, y, z ∈ X, τ1, τ2 ≥
0. Then, PM-space (X, θ, δ) is known as N.A.

Definition 2.3. A PM-space (X, θ, δ) is Archimedean iff ∃x, y, z ∈ X, τ13 ≥ 0 such
that θx,z (τi) < θx,y (τij) δθy,z (τ2) .

Definition 2.4. An arrangement {xn} in a N.A Menger PM-space (X, θ, δ) coincides
to x iff each ε > 0, λ > 0∃M(ε, λ) where g (θ (xn, x, ε)) < g(1− λ)∀n,m > M .

Definition 2.5. An arrangement {xn} in a N.A Menger PM-space (X, θ, δ) coincides
to x iff each ε > 0 λ > 0∃ an integer M(z, λ) where g (θ (xn, xn+p, ε)) < g(1 −
λ)∀n and n ≥M and p ≥ 1.

Definition 2.6. Two maps G and H of a N.A Menger PM-space (X, θ, δ) into it-
self is said to be R weakly commuting of type As if for x ∈ X and R > 0

g(θ(GHx,HHx, τ)) ≤ g
(
θ
(
Gx,Hx, τ

R

))
.

Definition 2.7. Two maps G and H of a N.A Menger PM-space(X, θ, δ ) into it-
self is said to be R weakly commuting of type AT if for x ∈ X and R > 0

g(θ(GHx,HHx, τ)) ≤ g
(
θ
(
Gx,Hx, τ

R

))
.
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Example 1. Let (X, d) be a metric space with d defined as d(x, y) =

{
0 if x = y

1 if x 6= y}

}

and δ be any τ -norm. then (X, θ, δ) is a N.A Menger PM-space iff θxy

(
τ...

)
=

τ
τ+d(x+y)

∀τ > 0.

Theorem 2.1. ([1]) Let G and H be two continuous self-maps of a complete N.A
Menger space (X, θ, δ ), where δ is continuous and firmly expanding τ -norm. Let
A be self map of X fulfilling:

(i) {A2G} and {A,H} are point wise R-weakly commuting and A(X) ⊆ G(X)∩
H(X);

(ii) g (θAx,Ay(τ)) ≤
ϕ[max{g (θGx,Hy(τ)) , g (θGx,Ax(τ)) , g (θGx,Ay(τ)) , g (θHy,Ay(τ))}] for all
x, y ∈ X, and ϕ : [0,∞) → [0,∞) is upper semi-continuous from the
right.

Then there exists a unique common fixed point A,G and H in X.

Theorem 2.2. ([1]) Let G and H be two continuous self-maps of a complete N.A
Menger space (X, θ, δ ), where δ is least τ -norm. Let A be self map of X fulfilling:
(i) {A,G} and {A,H} are point wise R -weakly commuting and A(X) ⊆ G(X) ∩
H(X).

(ii) g (θAx,Ay(τ)) ≤ ϕ


max





g (θAx,Gx(τ)) , g (θAx,Gy(τ)) , g (θAx,Hy(τ)) ,

g (θAy,Gx(τ)) , g (θAy,Gy(τ)) , g (θAy,Hy(τ))

g (θGx,Gy(τ)) , g (θCx,Hy(τ)) , g (θGy,Hy(τ))





for all x, y ∈ X, τ > 0, for some g ∈ Ω and ϕ ∈ φ.
Then A,G and H have a unique common fixed point in X.

3. MAIN RESULTS

The following theorem is an extension of Theorem 2.1 with ϕ ∈ φ.

Theorem 3.1. Let S, T and P be three continuous self-maps of a complete N . A
Menger space (X,F, δ) where δ is a continuous t-norm. Let A be self map of X
satisfying:
(i) {A, S}, {A,T} and {A,P} are point wise R-weakty commuting and A(X) ⊆
S(X) ∩ T(X) ∩ P(X).
(ii) g (FAx,Ay(t)) ≤
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ϕ


max





g (FAx,Sx(t)) , g (FAx,Sy(t)) , g (FAx,Ty(t)) , g (FAx,Py(t)) ,

g (FAy,Sx(t)) , g (FAy,Sy(t)) , g (FAy,Ty(t)) , g (FAy,Py(t))

g (FSx,Ty(t)) , g (FSx,Py(t)) , g (FSy,Ty(t)) , g (FSy,Py(t))





for all x, y ∈ X, t > 0, for some g ∈ Ω and ϕ ∈ φ.
Let x0 ∈ X. Define a sequence {xn} and {yn} by yn = Axn = Sxn+1 = Txn+2 =

Pxn+2 for all = 0, 1, 2 . . . Suppose limn→∞ Fyn,yn+1(t) = 1∀t > 0.

Then {yn} is a Cauchy Sequence in X.

Proof. Suppose {yn} is not a Cauchy sequence in X. Then there exist ε0 ∈
(0, 1), t0 > 0 and two sequences {mi} , {ni} of positive integers such that mi >

ni+1 and ni →∞ as i→∞; and Fymiymi
(t0) < 1− ε0 and Fyml−1

ynl
(t0) ≥ 1− ε0

for i = 1, 2, 3 . . . . By taking x = xml
and y = yni+2

in condition (ii), we get,

g
(
FAxmi ,Axni+2

(t)
)
≤

ϕ




max





g
(
FAxmi

sxmi
(t)
)
, g
(
FAxmiSxni+2

(t)
)
, g
(
FAxmi ,Txni+2

(t)
)
,

g
(
FAxmiPxni+2

(t)
)
, g
(
FAxni+2 ,sxmi

(t)
)
, g
(
FAxni+2 ,Sxni+2

(t)
)

g
(
FAxni+2 ,Txni+2

(t)
)
, g
(
FAxii+2

,Pxni+2
(t)
)
, g
(
FSxmi ,Txni+2

(t)
)
,

g
(
FSxmi ,Pxni+2

(t)
)
, g
(
FSxni+2 ,Txni+2

(t)
)
, g
(
FSxni+2 ,Pxni+2

(t)
)





since, X is N . We have, 1− ε0 > Fymiyni
(t) ≥ Fyml

yml−1
(t)δFymi−1ymi

(t). It follows
that

I. limn→∞

(
Fyml

yani+1
(t)
)

= (1− ε0)
II. limn→∞

(
Fym,yni

(t)
)

= (1− ε0)
III. limn→∞

(
Fym ,ym(−1)

(t)
)

= (1− ε0)
IV. limn→∞

(
Fyi+2

yimi−1
(t)
)

= (1− ε0)
V. limn→∞ (Fyml = 1, yni

(t)) = (1− ε0)
On letting i→∞, by using the results I, II, III, IV,V,VI and continuity of g, the
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inequality becomes,
g(1− ε0) ≤ ϕ[g(min[1, (1− ε0), (1− ε0), (1− ε0), (1− ε0), 1, 1, 1,

(1− ε0), (1− ε0), 1, 1]]

g (1− ε0) ≤ ϕ [g (1− ε0)] < g (1− ε0)
which is a contradiction. Therefore, {yn} is a Cauchy sequence in X. �

Lemma 3.1. If δ is a min t-norm and α, β, γ ∈ [0, 1] be such that αδβ ≤ γ, βδγ ≤
α, γδa ≤ β then a > β implies β = γ.

Theorem 3.2. Let S, I andP be three continuous self-maps of a completeN . A
Menger space (X,F, δ) whereδ is a minimum t-norm. Let A be self map of X
satisfying:
(i) {A, S}, {A,T} and {A,P} are point wise R-weakly commuting and A(X) ⊆
S(X) ∩ T(X) ∩ P(X);
(ii) g (FAx ,Ay(t)) ≤ ϕ [max {g (FAy,Sy(t)) , g (FAy,Ty(t)) ,

g (FAy,Py(t)) , g (FSx,Ty(t)) , g (FSx,Py(t)) , g (FSy,Ty(t)) , }]
for all x, y ∈ X, t > 0, for some g ∈ Ω and ϕ ∈ φ.

Then A, S, T and P have a unique common fixed point in X.
In fact for any x0 ∈ X, the sequence {yn} defined as yn = Axn = Sxn+1 =

Txn+2 = Pxn+3 for n = 0, 1, 2 . . ., then {yn} converges to the unique common fixed
point of A, S, T and P in X.

Proof. Firstly, we show that limn→∞
(
Fyn+1,yn+2(t)

)
= 1∀t > 0 By taking x = xn

and y = xn+1 in condition (ii). We get,

g
(
FAxmi ,Axni+2

(t)
)
≤

ϕ



max





g
(
FAxmi

sxmi
(t)

)
, g

(
FAxmiSxni+2

(t)
)
, g

(
FAxmi ,Txni+2

(t)
)
,

g
(
FAxmiPxni+2

(t)
)
, g

(
FAxni+2 ,sxmi

(t)
)
, g

(
FAxni+2 ,Sxni+2

(t)
)

g
(
FAxni+2 ,Txni+2

(t)
)
, g

(
FAxii+2

,Pxni+2
(t)

)
, g

(
FSxmi ,Txni+2

(t)
)
,

g
(
FSxmi ,Pxni+2

(t)
)
, g

(
FSxni+2 ,Txni+2

(t)
)
, g

(
FSxni+2 ,Pxni+2

(t)
)





g
(
Fyn+1·yn+2(t)

)
≤ ϕ

[
g
(
min

{(
Fynyn+1(t)

)
,
(
Fyn+1yn+2(t)

)
,

(
Fyn,yn+2(t)

)})](3.1)

Case-I: Suppose for some ’n’, Fyn+2,yn+2(t) = 1. Then from (3.1) we can write,

g
(
Fyn+2,yn+8(t)

)
≤ ϕ

[
g
(
min

{(
Fyn+1,yn+2(t)

)
,
(
Fyn+2,yn+3(t)

)
,
(
Fyn+1,yn+3(t)

)})]
.
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Next,

(3.2) α = Fyn+2Vn+2(t), β = Fyn+2,yn+3(t), γ = Fyn+2,yn+8(t).

Then, since X is N.A and α = 1, equation (3.2) satisfies the hypothesis Lemma
3.2, we get, g(β) ≤ ϕ(g(β)) < g(β) > 0, a contradiction. Hence (β) = 0, so that
g
(
Fyn+2,yn+8(t)

)
= 0. Consequently, Fyn+2,yn+3(t) = 1∀t > 0.

Hence by induction; Fyn+1yn+2(t) = 1 for m ≥ n. Therefore,

lim
m→∞

(
Fym+2,ym+2(t)

)
= 1∀t > 0.

Case-II: Suppose Fyn+2,yn+2(t) < 1∀n. Write
α = Fyn,yn+1(t), β = Fyn+1,yn+3(t), γ = Fyn,yn+2(t). If α > min{α, β, γ}, then from
Lemma 3.2 we get, β = γ = min{α, β, γ}. Then from inequality (3.1), we have,

g(β) ≤ ϕ(g(β)) < g(β) > 0,

which is a contradiction. Therefore α = min{α, β, γ}. This implies g(β) ≤
ϕ(g(α)). Hence,

g
(
Fyn+1yn+2(t)

)
≤ ϕ

[
g
(
Fyn,yn+1(t)

)]
≤ · · · ≤ ϕn [g (Fy0,y1(t))]→∞ as i→∞.

Therefore, from both the cases I and II, we obtain,

lim
m→∞

(
Fym+1,ym+2(t)

)
= 1∀t > 0.

Hence, {yn} is a Cauchy sequence in X. Since (X1F, δ) is complete, the sequence
{yn}converges to a point z,say in X. Now by definition of the sequence of {yn} ,
we have

yn → z, Axn → z, Txn → z, Pxn → z asn →∞
⇒ Syn → Sz, Tyn → Tz, Pyn → Pz

and
SAxn → Sz, TAxn → Tz, PAxn → Pz,

since {A2S} , {A,T} and {A,P} are point wise R-weakly commuting.
Hence,

FA\xn,saxn(t) ≥ FAxn,sxn

(
t

R

)
, R > 0, FATxn,TAxn(t) ≥ FAxn,Txn

(
t

R

)
, R > 0

and

(3.3) FAPxn,TAxn(t) ≥ FAxn,Pxn

(
t

R

)
, R > 0.
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From (3.3), we can write

lim
n→∞

FASxn,SAxn(t) = lim
n→∞

FAyn,syn(t) = lim
n→∞

FAyn,s2(t)

≥ lim
n→∞

FAxnsxn(t) = lim
n→∞

Fz,z(t) = 1

and Ayn → Sz as n→∞.
Similarly, limη→→∞ FATxn,TAxn(t) ≥ 1. Now

1 ≥ lim
n→∞

FAyn , τz(t) ≥ 1⇒ lim
n→∞

FAyn,T z(t) = 1⇒ Ayn → Tz

as n→∞ and limn→∞ FAPxn,PAxn(t) ≥ 1.

Now
1 ≥ lim

n→∞
FAynpz(t) ≥ 1

implies
lim
n→∞

FAyn,P z(t) = 1⇒ Ayn → Pz asn →∞
.

From the above analysis, we get, Sz = Tz = Pz.

Now by taking, x = Sxn and y = z in condition (ii), we get, Sz = Az. Hence,
Az = Sz = Tz = Pz.

By taking x = xn+1 and y = z in condition (ii), we get, z = Az. Hence,
z = Az = Sz = Tz = Pz.

Therefore z is a common fixed point of A, S, T and P .
Let x be a common fixed point of A, S, T and P . From condition (ii), we have,

g(Fx,z (t)) ≤ ϕ[max {0, g (Fx,z (t))}
g (Fx,z (t)) = 0 ∀ t > 0

Fx,z (t) = 1
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⇒ x = z

Therefore, z has a unique common fixed point of A, S, T and P. �
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