ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.8, 5637–5647 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.8.33

NANO I_q -NORMAL AND NANO I_q -REGULAR SPACES

R. PREMKUMAR¹, M. RAMESHPANDI, AND S. ANTONY DAVID

ABSTRACT. In this paper a new classes of nI_g -normal space and nI_g -regular space are introduced and various characterizations and properties are given. Further, we define a new notion is called nI_{rg} -closed set and establish their various characteristic properties are given.

1. INTRODUCTION

In 2013, Lellis Thivagar *et al.*, [3] introduced a nano topological space. Then the notions of an ideal nano topological space was introduced by Parimala *et al.*, [4, 6]. A nano topological space (U, \mathcal{N}) with an ideal I on U is called [6] an ideal nano topological space and is denoted by (U, \mathcal{N}, I) . For background material, papers [1] to [10] may be perused. A subset H of a space (U, \mathcal{N}) is called $(n\alpha$ -open, *nr*-open and *np*-open [3]), *nI*-open [4], *ng*-closed [2], *n\alphag*closed [10], *nrg*-closed [9] and *nI_g*-closed [5]. The family of all $n\alpha$ -closed (resp. \mathcal{N}^{α}) and the family of all *n**-closed(resp. \mathcal{N}^{*}).

In this paper a new classes of nI_g -normal space and nI_g -regular space are introduced and various characterizations and properties are given. Further, we define a new notion is called nI_{rg} -closed set and establish their various characteristic properties are given.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10, 54C08, 54C10.

Key words and phrases. nI_{rg} -closed set, nano I_{g} -normal, nano completely codense and nano I_{g} -regular spaces.

2. Preliminaries

In the rest of the paper, we denote a nano topological space by (U, \mathcal{N}) , where $\mathcal{N} = \tau_R(X)$. The nano-interior and nano-closure of a subset A of U are denoted by nint(A) and ncl(A) respectively. A nano topological space (U, \mathcal{N}) with an ideal I on U is called [6] an ideal nano topological space and is denoted by (U, \mathcal{N}, I) in future is referred as a space.

Definition 2.1. A subset H of a space (U, \mathcal{N}, I) is called;

- (i) nano *-closed (briefly n*-closed) [5] if $H_n^* \subseteq H$,
- (ii) nano dense (briefly *n*-dense) [7] if ncl(H) = U.

Definition 2.2. [1] A space (U, \mathcal{N}) is said to be almost nano regular (briefly, almost *n*-regular) if for each *n*-regular closed set *H* and a point $a \in U - H$, there exist disjoint *n*-open sets *M* and *N* such that $a \in M$ and $H \subseteq N$.

Definition 2.3. [8] A space U is called nano- T_1 space (briefly nT_1 -space) for $x, y \in U$ and $x \notin y$, there exists a nano-open sets G and H such that $x \in G, y \notin G$, and $y \in H, x \notin H$.

3. nI_g -NORMAL AND nI_g -REGULAR SPACES

Definition 3.1. An ideal nanotopological space (U, \mathcal{N}, I) is said to be a nano I_g -normal space(briefly nI_g -normal space) if for every pair of disjoint *n*-closed set A and B, there exist disjoint nI_g -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Definition 3.2. An ideal nano I is said to be nano completely codense if $PO(U) \cap I = \{\phi\}$, where PO(U) is the family of all *np*-open set in (U, \mathcal{N}) .

Theorem 3.1. Let (U, \mathcal{N}, I) be an ideal nanotopological space. Then the following are equivalent.

- (i) U is nI_q -normal.
- (ii) For every pair of disjoint *n*-closed sets E and F, there exist disjoint nI_g -open sets G and H such that $E \subseteq F$ and $F \subseteq H$.
- (iii) For every *n*-closed set *E* and a *n*-open set *H* containing *E*, there exists a nI_q -open set *G* such that $E \subseteq G \subseteq ncl^*(G) \subseteq H$

Proof. (i) \Rightarrow (ii) The proof follows from the definition of nI_q -normal spaces.

(ii) \Rightarrow (iii) Let *E* be a *n*-closed set and *H* be a *n*-open set containing *E*. Since *E* and *U*-*H* are disjoint *n*-closed sets, there exist disjoint nI_g -open sets *G* and *S* such that $E \subseteq G$ and $U - H \subseteq S$. Again, $G \cap S = \phi$ implies that $G \cap nint^*(S) = \phi$ and so $ncl^*(G) \subseteq U - nint^*(S)$. Since U - H is *n*-closed and $S \subseteq H$. Thus, we have $E \subseteq G \subseteq ncl^*(G) \subseteq U - nint^*(S) \subseteq H$ which proves (iii).

(iii) \Rightarrow (i) Let E and F be two disjoint n-closed subsets of U. By hypothesis, there exists a nI_g -open set G such that $E \subseteq G \subseteq ncl^*(G) \subseteq U - F$. If $S = U - ncl^*(G)$, then G and S are the required disjoint nI_g -open sets containing Eand F respectively. So, (U, \mathcal{N}, I) is nI_g -normal.

Theorem 3.2. Let (U, \mathcal{N}, I) be an ideal nanotopological space, where I is nano completely codense. If (U, \mathcal{N}, I) is nI_q -normal then normal space.

Proof. Suppose that I is nano completely codense. By Theorem 3.1, (U, \mathcal{N}, I) is nI_g -normal if and only if for each pair of disjoint n-closed sets E and F, there exist disjoint nI_g -open sets G and H such that $E \subseteq G$ and $F \subseteq H$ if and only if G is normal.

Theorem 3.3. Let (U, \mathcal{N}, I) be a nI_g -normal space. If P is n-closed and E is a ng-closed set such that $E \cap P = \phi$, then there exist disjoint nI_g -open sets G and H such that $E \subseteq G$ and $P \subseteq H$.

Proof. Since $E \cap P = \phi$, $E \subseteq U - P$ where U - P is *n*-open. Therefore, by hypothesis, $ncl(E) \subseteq U - P$. Since $ncl(E) \cap P = \phi$ and U is nI_g -normal, there exist disjoint nI_g -open sets G and H such that $ncl(E) \subseteq G$ and $P \subseteq H$. \Box

Theorem 3.4. Let (U, \mathcal{N}, I) be a normal ideal nanotopological space which is nI_g -normal. Then the following hold.

- (i) For every *n*-closed set *E* and every *ng*-open set *F* containing *E*, there exists a nI_q -open set *G* such that $E \subseteq nint^*(G) \subseteq G \subseteq F$.
- (ii) For every ng-closed set E and every n-open set F containing E, there a nI_q -closed set G such that $E \subseteq G \subseteq ncl^*(G) \subseteq F$.

Proof. (i) Let *E* be a *n*-closed set and *F* be a *ng*-open set containing *E*. Then $E \cap (U - F) = \phi$, where *E* is *n*-closed and U - F is *ng*-closed. By Theorem 3.3, there exist disjoint nI_g -open sets *G* and *H* such that $E \subseteq G$ and $U - F \subseteq H$.

Since $G \cap H = \phi$, we have $G \subseteq U - H$, then $E \subseteq nint^*(G)$. Therefore, $E \subseteq nint^*(G) \subseteq G \subseteq U - H \subseteq F$. This proves (i).

(ii) Let *E* be a *ng*-closed set and *F* be a *n*-open set containing *E*. Then U - F is a *n*-closed set contained in the *ng*-open set U - E. By (i), there exists a nI_g -open set *H* such that $U - F \subseteq nint^*(H) \subseteq H \subseteq U - E$. Therefore, $E \subseteq U - H \subseteq ncl^*(U - H) \subseteq F$. If G = U - H, then $E \subseteq G \subseteq ncl^*(G) \subseteq F$ and so *G* is the required nI_g -closed set. \Box

Definition 3.3. An ideal nanotopological space (U, \mathcal{N}, I) is said to be nano gI-normal (briefly ngI-normal) if for each pair of disjoint nI_g -closed sets E and F, there exist disjoint n-open sets G and H in U such that $E \subseteq G$ and $F \subseteq H$.

Theorem 3.5. In an ideal nanotopological space (U, \mathcal{N}, I) , every *n*-closed set is nI_q -closed.

Proof. Obvious.

Proposition 3.1. In an ideal nanotopological space (U, \mathcal{N}, I) , every ngI-normal space is normal. But the converse is not true as seen from the following Example.

Example 1. Let $U = \{n_1, n_2, n_3, n_4\}$ with $U/R = \{\phi, \{n_1\}, U\}$, $X = \{n_1\}$ and $I = \{\phi, \{n_1\}\}$. Since $\{n_1\}_n^* = \phi$, every *n*-open set is *n**-closed and so every subset of U is nI_g -closed. Now $A = \{n_1, n_2\}$ and $B = \{n_3, n_4\}$ are disjoint nI_g -closed sets, but they are not separated by disjoint *n*-open sets. So (U, \mathcal{N}, I) is not ngI-normal. Since there is no pair of disjoint *n*-closed sets, (U, \mathcal{N}, I) is normal.

Theorem 3.6. In an ideal nanotopological space (U, \mathcal{N}, I) , the following are equivalent.

- (i) U is ngI-normal.
- (ii) For every nI_g -closed set E and every nI_g -open set F containing E, there exists a n-open set G of U such that $E \subseteq G \subseteq ncl(G) \subseteq F$.

Proof.

(i) \Rightarrow (ii). Let *E* be a nI_g -closed set and *F* be a nI_g -open set containing *E*. Since *E* and U - F are disjoint nI_g -closed sets, there exist disjoint *n*-open sets *G* and *H* such that $E \subseteq G$ and $U - F \subseteq H$. Now $G \cap H = \phi \Rightarrow ncl(G) \subseteq U - H$. Therefore, $E \subseteq G \subseteq ncl(G) \subseteq U - H \subseteq F$. This proves (ii).

(ii) \Rightarrow (i). Suppose *E* and *F* are disjoint nI_g -closed sets, then the nI_g -closed set *E* is contained in the nI_g -open set U - F. By hypothesis, there exists a *n*-open

5640

set G of U such that $E \subseteq G \subseteq ncl(G) \subseteq U - F$. If H = U - ncl(G), then G and H are disjoint *n*-open sets containing E and F respectively. Therefore, (U, \mathcal{N}, I) is ngI-normal.

Theorem 3.7. In an ideal space (U, \mathcal{N}, I) , the following are equivalent.

- (i) U is ngI-normal.
- (ii) For each pair of disjoint nI_g -closed subsets E and F of U, there exists a n-open set G of U containing E such that $ncl(G) \cap F = \phi$.
- (iii) For each pair of disjoint nI_g-closed subsets E and F of U, there exists a n-open set G containing E and a n-open set H containing F such that ncl(G) ∩ ncl(H) = φ.

Proof.

(i) \Rightarrow (ii). Suppose that E and F are disjoint nI_g -closed subsets of U. Then the nI_g -closed set E is contained in the nI_g -open set U - F. By Theorem 3.6, there exists a n-open set G such that $E \subseteq G \subseteq ncl(G) \subseteq U - F$. Therefore, G is the required n-open set containing E such that $ncl(G) \cap F = \phi$.

(ii) \Rightarrow (iii). Let *E* and *F* be two disjoint nI_g -closed subsets of *U*. By hypothesis, there exists a *n*-open set *G* containing *E* such that $ncl(G) \cap F = \phi$. Also, ncl(G) and *F* are disjoint nI_g -closed sets of *U*. By hypothesis, there exists a *n*-open set *H* containing *F* such that $ncl(G) \cap ncl(H) = \phi$.

(iii) \Rightarrow (i) The proof is clear.

Theorem 3.8. Let (U, \mathcal{N}, I) be a ngI-normal space. If E and F are disjoint nI_g -closed subsets of U, then there exists disjoint n-open sets G and H such that $ncl^*(E) \subseteq G$ and $ncl^*(F) \subseteq H$.

Proof. Suppose that E and F are disjoint nI_g -closed sets. By Theorem 3.7 (iii), there exists a n-open set G containing E and a n-open set H containing F such that $ncl(G) \cap ncl(H) = \phi$. Since E is nI_g -closed, $E \subseteq G \Rightarrow ncl^*(E) \subseteq G$. Similarly $ncl^*(F) \subseteq H$.

Theorem 3.9. Let (U, \mathcal{N}, I) be a ngI-normal space. If E is a nI_g -closed set and F is a nI_g -open set containing E, then there exists a n-open set G such that $E \subseteq ncl^*(E) \subseteq G \subseteq nint^*(F) \subseteq F$.

Proof. Suppose E is a nI_g -closed set and F is a nI_g -open set containing E. Since E and U - F are disjoint nI_g -closed sets, by Theorem 3.8, there exist disjoint

n-open sets G and H such that $ncl^*(E) \subseteq G$ and $ncl^*(U - F) \subseteq H$. Now, $U - nint^*(F) = ncl^*(U - F) \subseteq H \Rightarrow U - H \subseteq nint^*(F)$. Again, $G \cap H = \phi \Rightarrow$ $G \subseteq U - H$ and so $E \subseteq ncl^*(E) \subseteq G \subseteq U - H \subseteq nint^*(E) \subseteq F$.

Definition 3.4. A subset E of an ideal nanotopological space (U, \mathcal{N}, I) is said to be a nano regular generalized closed set with respect to an ideal I (briefly nI_{rg} -closed) if $E_n^* \subseteq G$ whenever $E \subseteq G$ and G is n-regular open.

E is called nI_{rg} -open if U - E is nI_{rg} -closed.

Theorem 3.10. In an ideal nanotopological space (U, \mathcal{N}, I) , every nI_g -closed set is nI_{rg} -closed.

Proof. Follows from the Definitions 3.1 and 3.4

Lemma 3.1. Let (U, \mathcal{N}, I) be an ideal nanotopological spaces. A subset $E \subseteq U$ is nI_{rq} -open if and only if $P \subseteq nint^*(E)$ whenever P is nr-closed and $P \subseteq E$.

Proof. Suppose that E is nI_{rg} -open. Let P be a nr-closed set contained in E. Then $U - E \subseteq U - P$ and U - P is nr-open. Since U - E is nI_{rg} -closed, $ncl^*(U - E) \subseteq U - P$ and so $P \subseteq U - ncl^*(U - E) = nint^*(E)$.

Conversely, suppose $U - E \subseteq G$ and G is nr-open. Then $U - G \subseteq E$ and U - G is nr-closed. By our assumption, $U - G \subseteq nint^*(E)$ and so $U - nint^*(E) \subseteq G$ which implies that $ncl^*(U - E) \subseteq G$. Therefore, U - E is nI_{rg} -closed and so E is nI_{rg} -open.

Definition 3.5. A space (U, \mathcal{N}) is said to be a mildly nano normal (briefly mildly *n*-normal), if disjoint *nr*-closed sets are separated by disjoint *n*-open sets.

Theorem 3.11. Let (U, \mathcal{N}, I) be an ideal nanotopological space, where I is nano completely codense. Then the following are equivalent.

- (i) U is mildly n-normal.
- (ii) For disjoint nr-closed sets E and F, there exist disjoint nI_g-open sets G and H such that E ⊆ G and F ⊆ H.
- (iii) For disjoint *nr*-closed sets E and F, there exist disjoint nI_{rg} -open sets G and H such that $E \subseteq G$ and $F \subseteq H$.
- (iv) For a nr-closed set E and a nr-open set H containing E, there exists a nI_{rq} -open set G of U such that $E \subseteq G \subseteq ncl^*(G) \subseteq H$.
- (v) For a *nr*-closed set E and a *nr*-open set H containing E, there exists a $n\star$ -open set G of U such that $E \subseteq G \subseteq ncl^*(G) \subseteq H$.

(vi) For disjoint *nr*-closed sets *E* and *F*, there exist disjoint *n**-open sets *G* and *H*, such that $E \subseteq G$ and $F \subseteq H$.

Proof.

(i) \Rightarrow (ii). Suppose that E and F are disjoint nr-closed sets. Since U is mildly normal, there exists n-open sets G and H such that $E \subseteq G$ and $F \subseteq H$. But every n-open set is a nI_g -open set. This proves (ii).

(ii) \Rightarrow (iii). The proof follows from the fact that every nI_g -open set is a nI_{rg} -open set.

(iii) \Rightarrow (iv). Suppose *E* is *nr*-closed and *F* is a *nr*-open set containing *E*. Then *E* and U - F are disjoint *nr*-closed sets. By hypothesis, there exists disjoint nI_{rg} open sets *G* and *H* such that $E \subseteq G$ and $U - F \subseteq H$. Since U - F is *nr*-closed and *H* is nI_{rg} -open, then $U - F \subseteq nint^*(H)$ and so $U - nint^*(H) \subseteq F$. Again, $G \cap H = \phi$ implies that $G \cap nint^*(H) = \phi$ and so $ncl^*(G) \subseteq U - nint^*(H) \subseteq F$. Hence *G* is required nI_{rg} -open set such that $E \subseteq G \subseteq ncl^*(G) \subseteq F$.

(iv) \Rightarrow (v). Let *E* be a *nr*-closed set and *H* be a *nr*-open set containing *E*. Then there exists a nI_{rg} -open set *J* of *U* such that $E \subseteq J \subseteq ncl^*(J) \subseteq H$. By Lemma 3.1, $E \subseteq nint^*(J)$. If $G = nint^*(J)$, then *G* is a *n**-open set and $E \subseteq G \subseteq ncl^*(G) \subseteq ncl^*(J) \subseteq H$. Therefore, $E \subseteq G \subseteq ncl^*(G) \subseteq H$.

(v) \Rightarrow (vi). Let *E* and *F* be disjoint *nr*-closed subsets of *U*. Then U - F is a *nr*-open set containing *E*. By hypothesis, there exists a *n**-open set *G* of *U* such that $E \subseteq G \subseteq ncl^*(G) \subseteq U - F$. If $H = U - ncl^*(G)$, then *G* and *H* are disjoint *n**-open sets of *U* such that $E \subseteq G$ and $F \subseteq H$.

(vi) \Rightarrow (i). Let *E* and *F* be disjoint *nr*-closed sets of *U*. Then there exist disjoint *n**-open sets *G* and *H* such that $E \subseteq G$ and $F \subseteq H$. Since *I* is nano completely codence, then $\mathcal{N}^* \subseteq \mathcal{N}^{\alpha}$ and so $G, H \in \mathcal{N}^{\alpha}$. Hence $E \subseteq G \subseteq nint(ncl(nint(G))) = J$ and $F \subseteq H \subseteq nint(ncl(nint(H))) = K$. *J* and *K* are the required disjoint *n*-open sets containing *E* and *F* respectively. This proves (i).

4. nI_q -REGULAR SPACES

Definition 4.1. An ideal nanotopological space (U, \mathcal{N}, I) is said to be a nano I_g -regular space(briefly nI_g -regular space) if for each pair consisting of a point y and a closed set F not containing y, there exist disjoint nI_g -open sets G and H such that $y \in G$ and $F \subseteq H$.

Theorem 4.1. In an ideal nanotopological space (U, \mathcal{N}, I) , the following are equivalent.

- (i) U is nI_g -regular.
- (ii) For every *n*-closed set *F* not containing $a \in U$, there exist disjoint nI_g -open sets *G* and *H* such that $a \in G$ and $F \subseteq H$.
- (iii) For every *n*-open set *H* containing $a \in U$, there exists a nI_g -open set *G* of *U* such that $a \subseteq G \subseteq ncl^*(G) \subseteq H$.

Proof.

(i) and (ii) are equivalent by the Definition 4.1.

(ii) \Rightarrow (iii). Let H be a n-open subset such that $a \in H$. Then U - H is a nclosed set not containing a. Therefore, there exist disjoint nI_g -open sets G and Ssuch that $a \in G$ and $U - H \subseteq S$. Now, $U - H \subseteq S$ implies that $U - H \subseteq nint^*(S)$ and so $U - nint^*(S) \subseteq H$. Again, $G \cap S = \phi$ implies that $G \cap nint^*(S) = \phi$ and so $ncl^*(G) \subseteq U - nint^*(S)$. Therefore $a \in G \subseteq ncl^*(G) \subseteq H$. This proves (iii).

(iii) \Rightarrow (i). Let *F* be a *n*-closed set not containing *a*. By hypothesis, there exists a nI_g -open set *G* such that $a \in G \subseteq ncl^*(G) \subseteq U - F$. If $S = U - ncl^*(G)$, then *G* and *S* are disjoint nI_g -open sets such that $a \in G$ and $F \subseteq S$. This proves (i).

Theorem 4.2. If (U, \mathcal{N}, I) is a nI_g -regular, nT_1 -space where I is nano completely codense, then U is nr-closed.

Proof. Let F be a n-closed set not containing $a \in U$. By Theorem 4.1, there exists a nI_g -open set G of U such that $a \in G \subseteq ncl^*(G) \subseteq U - F$. Since U is a nT_1 -space, $\{a\}$ is n-closed and so $\{a\} \subseteq nint^*(G)$. Since I is nano completely codense, $\mathcal{N}^* \subseteq \mathcal{N}^\alpha$ and so $nint^*(G)$ and $U - ncl^*(G)$ are \mathcal{N}^α -open sets. Now, $a \in nint^*(G) \subseteq nint(ncl(nint(nint^*(G)))) = J$ and $F \subseteq U - ncl^*(G) \subseteq nint(ncl(nint(U - ncl^*(G)))) = K$. Then J and K are disjoint n-open sets containing a and F respectively. Therefore, U is nr-closed.

Theorem 4.3. If every *n*-open subset of an ideal nanotopological space (U, \mathcal{N}, I) is $n\star$ -closed, then (U, \mathcal{N}, I) is nI_g -regular.

Proof. Suppose every *n*-open subset of U is $n\star$ -closed. Then every subset of U is nI_g -closed and hence every subset of U is nI_g -open. If F is a *n*-closed set not containing a, then $\{a\}$ and F are the required disjoint nI_g -open sets containing a and F respectively. Therefore, (U, \mathcal{N}, I) is nI_g -regular.

Theorem 4.4. Let (U, \mathcal{N}, I) be an ideal topological space where I is nano completely codense. Then the following are equivalent.

- (i) U is nr-closed.
- (ii) For every *n*-closed set E and each $a \in U E$, there exist disjoint *n**-open sets G and H such that $a \in G$ and $E \subseteq H$.
- (iii) For every n-open set H of U and $a \in H$, there exists a n*-open set G such that $a \in G \subseteq ncl^*(G) \subseteq H$.

Proof.

(i) \Rightarrow (ii). Let *E* be a *n*-closed subset of *U* and let $a \in U - E$. Then there exist disjoint *n*-open sets *G* and *H* such that $a \in G$ and $E \subseteq H$. But every *n*-open set is *n**-open. This proves (ii).

(ii) \Rightarrow (iii). Let H be a n-open set containing $a \in U$. Then U - H is n-closed and $a \in H$. By hypothesis, there exist disjoint n*-open sets G and S such that $a \in G$ and $U - H \subseteq S$. Since $G \cap S = \phi$, we have $G \subseteq U - S$ and U - S is n*-closed. So $ncl^*(G) \subseteq U - S \subseteq H$. Therefore, G is the required n*-open set such that $a \in G \subseteq ncl^*(G) \subseteq H$.

(iii) \Rightarrow (i). Let *E* be a *n*-closed set and $a \notin E$. By (iii), there exists a *n**open set *G* such that $a \in G \subseteq ncl^*(G) \subseteq U - E$. Let $H = U - ncl^*(G)$. Then $E \subseteq H$, and *G* and *H* are disjoint *n**-open sets. Since *I* is nano completely codense, $\mathcal{N}^* \subseteq \mathcal{N}^{\alpha}$ and so *G* and *H* are \mathcal{N}^{α} -open sets. Therefore, $G \subseteq nint(ncl(nint(G))) = J$ and $E \subseteq H \subseteq nint(ncl(nint(H))) = K$. Then *J* and *K* are disjoint *n*-open sets such that $a \in J$ and $E \subseteq K$. Hence *U* is *n*-regular.

Theorem 4.5. Let (U, \mathcal{N}, I) be an ideal nanotopological space, where I is nano completely codense. Then the following are equivalent.

- (i) U is almost n-regular.
- (ii) For each *nr*-closed set *E* and each $a \in U E$, there exist disjoint *n**-open sets *G* and *H* such that $a \in G$ and $E \subseteq H$.
- (iii) For each *nr*-open set H and $a \in H$, there exists a *n**-open set G such that $a \in G \subseteq ncl^*(G) \subseteq H$.

Proof.

(i) \Rightarrow (ii). Let $E \subseteq U$ be *nr*-closed and $a \in U - E$. Then there exist disjoint *n*-open sets *G* and *H* such that $a \in G$ and $E \subseteq H$. Since every *n*-open set is a *n**-open set, the proof follows.

(ii) \Rightarrow (iii). Let H be nr-open and $a \in H$. By (ii), there exist disjoint $n\star$ -open sets G and S such that $a \in G$ and $U - H \subseteq S$. Since $G \cap S = \phi$, we have $ncl^*(G) \subseteq U - S \subseteq H$. Therefore, G is the required $n\star$ -open set such that $a \in G \subseteq ncl^*(G) \subseteq H$.

(iii) \Rightarrow (i). Let *E* be *nr*-closed and $a \in U - E$. By hypothesis, there exists a *n**-open set *G* such that $a \in G \subseteq ncl^*(G) \subseteq U - E$. Let $H = U - ncl^*(G)$. Then $E \subseteq H$, and *G*, *H* are disjoint *n**-open sets. Since *I* is nano completely codense, $n\tau^* \subseteq n\tau^{\alpha}$ and so *G* and *H* are *n* α -open sets. Therefore, we have $a \in G \subseteq nint(ncl(nint(G))) = J$ and $E \subseteq H \subseteq nint(ncl(nint(H))) = K$. Then *J* and *K* are the required disjoint *n*-open sets such that $a \in J$ and $E \subseteq K$. Hence *U* is almost *n*-regular.

REFERENCES

- [1] S. ANTONY DAVID, M. RAMESHPANDI, R. PREMKUMAR: A new separation axiom in nano topological spaces, (to appear for Advances in Mathematics: Scientific Journal).
- [2] K. BHUVANESHWARI, K. MYTHILI GNANAPRIYA: Nano generalised closed sets, International Journal of Scientific and Research Publications, 4(5) (2014), 1-3.
- [3] M. LELLIS THIVAGAR, C. RICHARD: On nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1) (2013), 31-37.
- [4] M. PARIMALA, S. JAFARI: On some new notions in nano ideal topological spaces, Eurasian Bulletin Of Mathematics, 1(3) (2018), 85-93.
- [5] M. PARIMALA, S. JAFARI, S. MURALI: Nano ideal generalized closed sets in nano ideal topological spaces, Annales Univ. Sci. Budapest., **60**(2017), 3-11.
- [6] M. PARIMALA, T. NOIRI, S. JAFARI: *New types of nano topological spaces via nano ideals*, https://www.researchgate.net/publication/315892279.
- [7] P. SATHISHMOHAN, V. RAJENDRAN, C. VIGNESH KUMAR, P.K. DHANASEKARAN: On nano semi pre neighbourhoods in nano topological spaces, Malaya Journal of Matematik, 6(1) (2018), 294-298.
- [8] P. SATHISHMOHAN, V. RAJENDRAN, P.K. DHANASEKARAN: Further properties of nano pre- T_0 , nano pre- T_1 and nano pre- T_2 spaces, Malaya Journal of Matematik, 7(1) (2019), 34-38.
- [9] P. SULOCHANA DEVI, K. BHUVANESWARI: On nano regular generalized and nano generalized regular closed sets in nano topological spaces, International Journal of Engineering Trends and Technology, 8(13) (2014), 386-390.

[10] R. THANGA NACHIYAR, K. BHUVANESWARI: On nano generalized A-closed sets & nano A-generalized closed sets in nano topological spaces, International Journal of Engineering Trends and Technology, 6(13) (2014), 257-260.

DEPARTMENT OF MATHEMATICS, SENTHAMARAI COLLEGE OF ARTS AND SCIENCE, MADURAI DISTRICT, TAMIL NADU, INDIA. *Email address*: prem.rpk27@gmail.com

DEPARTMENT OF MATHEMATICS, PASUMPON MUTHURAMALINGA THEVAR COLLEGE, USILAMPATTI, MADURAI DISTRICT, TAMIL NADU, INDIA. *Email address*: proframesh9@gmail.com

DEPARTMENT OF MATHEMATICS, ANANDA COLLEGE, SIVAGANGA DISTRICT, TAMIL NADU, INDIA. *Email address*: sanantodavid@gmail.com