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CONVOLUTION CONDITIONS AND GENERALIZED
JANOWSKI-SAKAGUCHI TYPE FUNCTIONS

N. SHILPA!

ABSTRACT. Inthe present paper we obtain convolution conditions for the classes
K(A,B,s,t), S*(A,B,s,t), Kx(A, B,s,t), Sy(A, B, s,t) defined by using Janowski
class and Sakaguchi type functions.

1. INTRODUCTION

Let A denote the class of all analytic univalent functions of the form
(1.1) f2) =2+ an2"
n=2

defined in the unit disc U = {z : |z| < 1}.

For f,g € A, where f is of the form (1.1) and ¢g(z) = z + anz”, b, >0,
n=2

(f*xg)(z) =2+ Z a,b,z", is called the convolution or Hadamard product of f
n=2

and g.

Let H = {w,w analyticin 4, w(0) =0, |w(z)| < 1, z € U}.
Let P(A, B) denote the Janowski class [3] containing functions p of the form
1+ Aw(z)

= > 1<B<A<I1 H.
p(z) 1+ Bw(2)’ - sLwe
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Now we introduce the following classes of analytic functions

(i) A function f € s*(A,B,s,t),if% € P(A, B).

eir s=t)zf (2) ooy
(i) f e Si(A, B,s,t),if —H==08 € P(A, B).
The classes K (A, B,s,t) and K,(A, B, s,t) are defined by f € K(A, B, s,t),
if zf € S*(A,B,s,t) and f € Ky(A,B,s,t), if zf € Si(A,B,s,t) where
s,t € R with s # ¢ forall z € i and ) is real and satisfies |\ < 7.
Note that for A = 1—2«a, B = —1, we obtain the classes defined by Frasin [1],
when A =1-—2a, B = —1, s =1 we have the classes introduced by Owa [2],

for A=1—2a, B=—1,s=1 and t = —1 we have the class introduced and

studied by Sakaguchi [4] ans for s=1 we get classes in [5].

2. MAIN RESULTS

Theorem 2.1. A function f defined by ( 1.1) belongs to the class K(A, B, s,t) in
|z| < R <1 ifand only if

1 2(1+2)(1+ Bp) — 2(1 — 2)(1 4+ Ap)u,(s,t)
z U (1—2)3

b0, (el < Ro1ol = ),

n—1
where u,(s,t) = Z s I

j=1
Proof. The function f belongs to K (A, B, s,t) if and only if

(8_t>( ,( )), e P(A,B)

f'(sz) = f(t2)

1+ A
But the function p(z) = 1+ Aw(z) —1 < B < A< 1,w € H is subordinate to

1+ Bw(z)’
1+ A
] j: BZ' They map the unit circle |z| = 1 onto the boundary of the circle on the

z
- 1

line joining TR and 5B as diameter. When B=-1, the image of the unit

circle is the line ®{p(2)} = %, —1 < A < 1. Further f;/(;;;(j];/(él))’

14+ A
z = 0and (1, 0) lies inside the image circle. The functions 1+ Aw(z)
1+ Bw(z)

and hence map regions onto regions. Therefore every point in the interior of the

=1 at

are analytic
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unit disc goes over to an interior point of the image disc. Thus f € K (A, B, s,t)
is equivalent to

(s — t)(zf (2))
f'(sz) = [f(tz)

This simplifies to

1+ Ap

2.1
@2.1) T B,

(s < Rlpl = 1,Bp # —1)

,

(2.2) (1+ Bp)(zf (2)) = L+ Ap)[L+ > nanz"""un(s,t)] # 0.

n=2

n—1 )
where u,(s,t) = Zs"‘jtj_l. Since f(z) = z + Zanz” we have zf'(z) =

j=1 n=2
- oy < / 1
z+ g na,z" and (zf (2)) =1+ E n?a,z""' = f(2) * T Therefore we
-z
n=2 n=2
have

I (1+ Bp) — (1 — 2)(1 + Ap)uy,(s,t)
=2

which is equivalent to
— 2
1 {fo LA+ Bp) = (14 Ap)un(s, )]z + (1 + Ap)un(s, )2 } 20,

70,

(1—2)
(Izl < R,[p] = 1).
un (s,t)(14+Ap) 2
1 2+ T3 Bo)—un ) (11 Ap) ©
2.3 - / pP)—uUnls, P O

Since zf g = f*zg , (2.3) becomes

(1+Bp)tun(st)(1+Ap) 2
1 z+ 1+Bp)—un(s,t)(1+A <
;[f* ( P) (s,t)( p) 750, ‘Z|<R, ’p’zl.

(1—-2)°
O

Theorem 2.2. A function f defined by ( 1.1) belongs to the class S*(A, B, s,t) in
|z| < R <1 ifand only if

un (s,t)(14+Ap) 2
1 21 WFBp)—uns0(1+A0) >
- n(o 0 <R |p=1
: = £0, (|1 < R 1ol = 1),

n—1
where u,(s,t) = Z §"I L

Jj=1
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Proof. Since f € S*(A,B,s,t) if and only if ¢ € K(A, B,s,t) where g(z) =
/ @dt, we have
0

(1+Bp)+un(s,t)(1+Ap) 2 un (s,t)(1+Ap) 2
L 2 GBpmiean * | L) 2 G5B An
2 (1—2)3 z (1—2)2
Thus result follows immediately from Theorem 2.1. 0

As a corollary we can derive coefficient inequalities for the class S*(A, B, s, t).

Corollary 2.1. A function f € Ais in the class S*(A, B, s, t) if and only if

flz)=1+ ZA,LZ"*I # 0,

where
4 = (n —un(s,t)) + (nB — Aun(s,t))pa
" p(B —A) "
n—1
and u,(s,t) = Z §"IE L
j=1

Proof. A function f € S*(A, B, s,t) if and only if

(s —t)zf'(2)
f(s2) = f(tz)

1+ Ap
1+ Bp’

+

That is
(14 Bp)(s = t)(2f'(2)) = (L + Ap) [f(s2) — f(t2)] # 0
which implies
(B—A)pz |1+ Zn(l + Bp) —un(s,t)(1+ Ap) | a,z™ # 0.

This simplifies into

which completes the proof. O
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Theorem 2.3. For |z| < R < 1, X real with |A\| < § and |p| = 1, we have
f € Kx(A, B,s,t) if and only if

1 2+ El-&-Bpg-i-unEs,tggl-i-npg 2
14+Bp)—un(s,t)(1+np
Z 0 R =1
|7 £0, sl <R, ol =1,
n—1
where n = (Acos A\ +iBsin \) e”™ and u,(s,t) = Z s I
j=1

Proof. f € K\(A,B,s,t) in |z] < R <1 if and only if

oA (s — t)(zf’)/
f(s2) — f'(t2)

COSA

— 38InA\

#+

14+ Ap
1+ Bp’

(lz] < R.|pl = 1,Bp # —1).
This simplifies to

(2.4) (s = 1) (2f'(2)) (1 + Bp) — (L+1p) (f'(s2) — f'(t2)) # 0.
with n = (Acos) + iBsin\)e ™.

Now proceeding exactly as in Theorem 2.1 and replacing A by 7 the result
follows. d

Theorem 2.4. For |z| < R < 1, X real with |A\| < § and |p| = 1, we have
f € S3(A, B, s,t) if and only if

un(57t)(1+77p) 2
1 z+ 14+Bp)—un(s,t)(1+ <
| A0 < R =L
n—1
where n = (Acos A\ +iBsin \) e”™ and u,(s,t) = Z §"IE L
j=1

Proof. The result follows from Theorem 2.3 in the same way as Theorem 2.2
followed from Theorem 2.1. O

As a corollary we can derive coefficient inequalities for the class S5(A, B, s, t).
Corollary 2.2. A function f € Ais in the class S;(A, B, s, t) if and only if
F(z) =14 d2" ' #0,
n=2

n—un(8,t))+(nB—yun(s,t))
p(B—A)

where d,, = ! La, and v = (Acos A +iBsin \) e
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Proof. A function f € S}(A, B, s,t) if and only if

ix (s=)2f'(2) s
 Gagus) _SIDA 14 Ap

cos \ 1+ Bp
Thatis, (14 Bp)(s—1t)(zf'(2)) — (1 +p)[f(sz) — f(tz)] # 0. The rest of the
proof follows as in Corollary 2.1. O

Remark 2.1. When s = 1 and t = 0 we get Convolution conditions as in [3] for the
classes K(A,B), S*(A,B), Kx(A,B), Si(A, B) and for s = 1 we get the results
in [5].
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