Advances in Mathematics: Scientific Journal 9 (2020), no.8, 5649-5654

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.8.34

CONVOLUTION CONDITIONS AND GENERALIZED JANOWSKI-SAKAGUCHI TYPE FUNCTIONS

N. SHILPA¹

ABSTRACT. In the present paper we obtain convolution conditions for the classes K(A,B,s,t), $S^*(A,B,s,t)$, $K_\lambda(A,B,s,t)$, $K_\lambda(A,B,s,t)$, defined by using Janowski class and Sakaguchi type functions.

1. Introduction

Let A denote the class of all analytic univalent functions of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

defined in the unit disc $U = \{z : |z| < 1\}$.

For $f,g\in\mathcal{A}$, where f is of the form (1.1) and $g(z)=z+\sum_{n=2}^{\infty}b_nz^n,\ b_n\geq 0$,

 $(f*g)(z)=z+\sum_{n=2}^{\infty}a_nb_nz^n$, is called the convolution or Hadamard product of f and g.

Let $H = \{\omega, \omega \text{ analytic in } \mathcal{U}, \, \omega(0) = 0, \, |\omega(z)| < 1, \, z \in \mathcal{U}\}.$

Let P(A, B) denote the Janowski class [3] containing functions p of the form

$$p(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)}, -1 \le B < A \le 1, \omega \in H.$$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions, Janowski class, Hadamard product, sakaguchi type functions.

5650 N. SHILPA

Now we introduce the following classes of analytic functions

(i) A function
$$f \in S^*(A, B, s, t)$$
, if $\frac{(s-t)zf'(z)}{f(sz) - f(tz)} \in P(A, B)$.

(ii)
$$f \in S_{\lambda}^*(A, B, s, t)$$
, if $\frac{e^{i\lambda}\frac{(s-t)zf'(z)}{f(sz)-f(tz)}-isin\lambda}{cos\lambda} \in P(A, B)$.

The classes K(A,B,s,t) and $K_{\lambda}(A,B,s,t)$ are defined by $f \in K(A,B,s,t)$, if $zf' \in S^*(A,B,s,t)$ and $f \in K_{\lambda}(A,B,s,t)$, if $zf' \in S^*_{\lambda}(A,B,s,t)$ where $s,t \in \mathbb{R}$ with $s \neq t$ for all $z \in \mathcal{U}$ and λ is real and satisfies $|\lambda| < \frac{\pi}{2}$.

Note that for $A=1-2\alpha$, B=-1, we obtain the classes defined by Frasin [1], when $A=1-2\alpha$, B=-1, s=1 we have the classes introduced by Owa [2], for $A=1-2\alpha$, B=-1, s=1 and t=-1 we have the class introduced and studied by Sakaguchi [4] ans for s=1 we get classes in [5].

2. Main Results

Theorem 2.1. A function f defined by (1.1) belongs to the class K(A, B, s, t) in $|z| < R \le 1$ if and only if

$$\frac{1}{z} \left\{ f * \frac{z(1+z)(1+B\rho) - z(1-z)(1+A\rho)u_n(s,t)}{(1-z)^3} \right\} \neq 0, \quad (|z| < R, |\rho| = 1),$$

where
$$u_n(s,t) = \sum_{j=1}^{n-1} s^{n-j} t^{j-1}$$

Proof. The function f belongs to K(A, B, s, t) if and only if

$$\frac{(s-t)(zf'(z))'}{f'(sz)-f'(tz)} \in P(A,B).$$

But the function $p(z)=\frac{1+A\omega(z)}{1+B\omega(z)}, \ -1\leq B< A\leq 1, \omega\in H$ is subordinate to $\frac{1+Az}{1+Bz}$. They map the unit circle |z|=1 onto the boundary of the circle on the line joining $\frac{1-A}{1-B}$ and $\frac{1+A}{1+B}$ as diameter. When B=-1, the image of the unit circle is the line $\Re\{p(z)\}=\frac{1-A}{2}, \ -1< A\leq 1.$ Further $\frac{(s-t)(zf'(z))'}{f'(sz)-f'(tz)}=1$ at z=0 and (1,0) lies inside the image circle. The functions $\frac{1+A\omega(z)}{1+B\omega(z)}$ are analytic and hence map regions onto regions. Therefore every point in the interior of the

unit disc goes over to an interior point of the image disc. Thus $f \in K(A,B,s,t)$ is equivalent to

(2.1)
$$\frac{(s-t)(zf'(z))'}{f'(sz) - f'(tz)} \neq \frac{1 + A\rho}{1 + B\rho}, \quad (|z| < R, |\rho| = 1, B\rho \neq -1)$$

This simplifies to

(2.2)
$$(1+B\rho)(zf'(z))' - (1+A\rho)[1+\sum_{n=2}^{\infty}na_nz^{n-1}u_n(s,t)] \neq 0.$$

where
$$u_n(s,t) = \sum_{j=1}^{n-1} s^{n-j} t^{j-1}$$
. Since $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ we have $zf'(z) = z + \sum_{n=2}^{\infty} a_n z^n$

$$z + \sum_{n=2}^{\infty} n a_n z^n$$
 and $(zf'(z))' = 1 + \sum_{n=2}^{\infty} n^2 a_n z^{n-1} = f'(z) * \frac{1}{(1-z)^2}$. Therefore we

have

$$f' * \frac{(1+B\rho) - (1-z)(1+A\rho)u_n(s,t)}{(1-z)^2} \neq 0,$$

which is equivalent to

$$\frac{1}{z} \left\{ zf' * \frac{[(1+B\rho) - (1+A\rho)u_n(s,t)]z + (1+A\rho)u_n(s,t)z^2}{(1-z)^2} \right\} \neq 0,$$

$$(|z| < R, |\rho| = 1).$$

(2.3)
$$\frac{1}{z} \left[zf' * \frac{z + \frac{u_n(s,t)(1+A\rho)}{(1+B\rho)-u_n(s,t)(1+A\rho)} z^2}{(1-z)^2} \right] \neq 0.$$

Since zf' * g = f * zg', (2.3) becomes

$$\frac{1}{z} \left[f * \frac{z + \frac{(1+B\rho) + u_n(s,t)(1+A\rho)}{(1+B\rho) - u_n(s,t)(1+A\rho)} z^2}{(1-z)^3} \right] \neq 0, \ |z| < R, \ |\rho| = 1.$$

Theorem 2.2. A function f defined by (1.1) belongs to the class $S^*(A, B, s, t)$ in $|z| < R \le 1$ if and only if

$$\frac{1}{z} \left[f * \frac{z + \frac{u_n(s,t)(1+A\rho)}{(1+B\rho)-u_n(s,t)(1+A\rho)} z^2}{(1-z)^2} \right] \neq 0, \ (|z| < R, \ |\rho| = 1),$$

where
$$u_n(s,t) = \sum_{j=1}^{n-1} s^{n-j} t^{j-1}$$
.

5652 N. SHILPA

Proof. Since $f \in S^*(A, B, s, t)$ if and only if $g \in K(A, B, s, t)$ where $g(z) = \int_0^z \frac{f(t)}{t} dt$, we have

$$\frac{1}{z} \left[g * \frac{z + \frac{(1+B\rho) + u_n(s,t)(1+A\rho)}{(1+B\rho) - u_n(s,t)(1+A\rho)} z^2}{(1-z)^3} \right] = \frac{1}{z} \left[f * \frac{z + \frac{u_n(s,t)(1+A\rho)}{(1+B\rho) - u_n(s,t)(1+A\rho)} z^2}{(1-z)^2} \right].$$

Thus result follows immediately from Theorem 2.1.

As a corollary we can derive coefficient inequalities for the class $S^*(A, B, s, t)$.

Corollary 2.1. A function $f \in A$ is in the class $S^*(A, B, s, t)$ if and only if

$$f(z) = 1 + \sum_{n=2}^{\infty} A_n z^{n-1} \neq 0,$$

where

$$A_n = \frac{(n - u_n(s,t)) + (nB - Au_n(s,t))\rho}{\rho(B - A)}a_n$$

and
$$u_n(s,t) = \sum_{j=1}^{n-1} s^{n-j} t^{j-1}$$
.

Proof. A function $f \in S^*(A, B, s, t)$ if and only if

$$\frac{(s-t)zf'(z)}{f(sz) - f(tz)} \neq \frac{1 + A\rho}{1 + B\rho}.$$

That is

$$(1 + B\rho)(s - t)(zf'(z)) - (1 + A\rho)[f(sz) - f(tz)] \neq 0$$

which implies

$$(B-A)\rho z \left[1 + \sum_{n=2}^{\infty} n(1+B\rho) - u_n(s,t)(1+A\rho)\right] a_n z^n \neq 0.$$

This simplifies into

$$1 + \sum_{n=2}^{\infty} \frac{(n - u_n(s, t))(nB - Au_n(s, t))\rho}{\rho(B - A)} a_n z^{n-1} \neq 0,$$

which completes the proof.

Theorem 2.3. For $|z| < R \le 1$, λ real with $|\lambda| < \frac{\pi}{2}$ and $|\rho| = 1$, we have $f \in K_{\lambda}(A, B, s, t)$ if and only if

$$\frac{1}{z} \left[f * \frac{z + \frac{(1+B\rho) + u_n(s,t)(1+\eta\rho)}{(1+B\rho) - u_n(s,t)(1+\eta\rho)} z^2}{(1-z)^3} \right] \neq 0, \ |z| < R, \ |\rho| = 1,$$

where $\eta = (A\cos\lambda + iB\sin\lambda) e^{-i\lambda}$ and $u_n(s,t) = \sum_{j=1}^{n-1} s^{n-j} t^{j-1}$.

Proof. $f \in K_{\lambda}(A, B, s, t)$ in $|z| < R \le 1$ if and only if

$$\frac{e^{i\lambda} \frac{(s-t)(zf')'}{f'(sz) - f'(tz)} - isin\lambda}{cos\lambda} \neq \frac{1 + A\rho}{1 + B\rho}, \quad (|z| < R, |\rho| = 1, B\rho \neq -1).$$

This simplifies to

(2.4)
$$(s-t)(zf'(z))'(1+B\rho) - (1+\eta\rho)(f'(sz) - f'(tz)) \neq 0.$$

with $\eta = (A\cos\lambda + iB\sin\lambda)e^{-i\lambda}$.

Now proceeding exactly as in Theorem 2.1 and replacing A by η the result follows.

Theorem 2.4. For $|z| < R \le 1$, λ real with $|\lambda| < \frac{\pi}{2}$ and $|\rho| = 1$, we have $f \in S^*_{\lambda}(A, B, s, t)$ if and only if

$$\frac{1}{z} \left[f * \frac{z + \frac{u_n(s,t)(1+\eta\rho)}{(1+B\rho) - u_n(s,t)(1+\eta\rho)} z^2}{(1-z)^2} \right] \neq 0, \ |z| < R, \ |\rho| = 1,$$

where
$$\eta = (A\cos\lambda + iB\sin\lambda) e^{-i\lambda}$$
 and $u_n(s,t) = \sum_{j=1}^{n-1} s^{n-j} t^{j-1}$.

Proof. The result follows from Theorem 2.3 in the same way as Theorem 2.2 followed from Theorem 2.1. \Box

As a corollary we can derive coefficient inequalities for the class $S_{\lambda}^*(A, B, s, t)$.

Corollary 2.2. A function $f \in A$ is in the class $S^*_{\lambda}(A, B, s, t)$ if and only if

$$f(z) = 1 + \sum_{n=2}^{\infty} d_n z^{n-1} \neq 0,$$

where $d_n = \frac{(n-u_n(s,t))+(nB-\gamma u_n(s,t))\rho}{\rho(B-A)}a_n$ and $\gamma = (A\cos\lambda + iB\sin\lambda)e^{-i\lambda}$.

N. SHILPA

Proof. A function $f \in S^*_{\lambda}(A,B,s,t)$ if and only if

$$\frac{e^{i\lambda}\frac{(s-t)zf'(z)}{f(sz)-f(tz)} - i\sin\lambda}{\cos\lambda} \neq \frac{1+A\rho}{1+B\rho}.$$

That is, $(1+B\rho)(s-t)(zf'(z))-(1+\gamma\rho)\left[f(sz)-f(tz)\right]\neq 0$. The rest of the proof follows as in Corollary 2.1.

Remark 2.1. When s = 1 and t = 0 we get Convolution conditions as in [3] for the classes K(A, B), $S^*(A, B)$, $K_{\lambda}(A, B)$, $K_{\lambda}(A, B)$, and for s = 1 we get the results in [5].

REFERENCES

- [1] B.A. FRASIN: Coefficient Inequalities for certain classes of Sakaguchi type functions, International Journal of Nonlinear Science. **10**(2) (2010), 206-211.
- [2] S. OWA, T. SEKINE, R. YAMAKAWA: On Sakaguchi type functions, Appl. Math. and Comp., 187(1) (2007), 356-361.
- [3] K.S. PADMANABHAN, M.S. GANESHAN: Convolution conditions for certain classes of analytic functions, Indian J. Pure Appl. Math., **15**(7) (1984), 777-780.
- [4] K. SAKAGUCHI: On a certain univalent mapping, J.Math. Soc. Japan., 11 (1959), 72-75.
- [5] N. SHILPA, H. SHAMSAN, S. LATHA: Convolution conditions for Sakaguchi-Janowski type functions, Journal of Applied Science and Computations, VI(IV) (2019), 4018-4023.
- [6] K. E. ATKINSON: An Introduction to Numerical Analysis, 2nd ed., Wiley, New York, 1989.
- [7] A. W. GOODMAN: On uniformly convex functions, Annal. Polon. Math. 56 (1991), 87-92.
- [8] F. VAJZOVIĆ, A. ŠAHOVIĆ: Cosine operator functions and Hilbert transformations, Novi Sad J. Math. **35**(2) (2005), 41-55.

PG DEPARTMENT OF MATHEMATICS

JSS COLLEGE OF ARTS, COMMERCE AND SCIENCE, OOTY ROAD

Mysore - 570 025

INDIA

Email address: drshilpamaths@gmail.com