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ψ-I-CLOSED SET, WEAKLY ψ-I-CLOSED SET AND CONTRA
ψ-I-CONTINUOUS MAPPING IN IDEAL TOPOLOGICAL SPACES

C. INDIRANI1 AND K. MEENAMBIKA

ABSTRACT. In this paper, we introduce a new class of sets namely ψ-I-closed
sets, weakly ψ-I-closed sets and contra-ψ-I continuous mappings in ideal topo-
logical spaces and investigate their properties and relations.

1. INTRODUCTION

N.Levine[14] and M.E.Abd El-Monsef et al. [1] introduced semi-open sets
and β-sets respectiely. Levine [18] generalised the concept of closed sets to
generalised closed sets. Bhattacharaya and Lahiri [6] generalized the concept of
closed sets to semi-generalized closed sets via semi-open sets. The complement
of a semi-open(resp. semi-generalized closed) set is called semi-closed [7] (resp.
semi-generalized open [6])set. In 2000 M.K.R.S. Veera Kumar [25] introduced
ψ-closed sets and in 1992 Jankovic and Hamlett [16] introduced the notion of
I-open sets in an ideal topological spaces via ideals. Abd El-Monsef et al[1]
further investigated I-open sets and I-continuous functions. The purpose of
this paper is to give a new class of ψ-I-closed and weakly ψ-I-closed sets in
an ideal topological space and derive some characterizations . Later S. Jafari
and T. Noiri [15] introduced Contra -α-continuous between topological spaces.
Throughout this paper, int(A) and cl(A) denote the interior and closure of A,
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respectively. An ideal I on a topological space(X, τ) is a nonempty collection of
subsets of x which satisfies (i) A ∈ I and B ⊂ A implies B ∈ A implies B ∈ I and
(ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a topological space (X, τ) with
an ideal I on X and if P(X) is the set of all subsets of X, then the set operator
(.)∗ : P(X)→ P(X), called the local function of A with respect to τ and I, is
defined as follows: For A ⊂ X, A∗(τ, I) = {x ∈ X : U ∩ A /∈ I}, for every open
set U of X containing x. A Kuratowski closure operator cl∗(.) for a topology
τ ∗(τ , I) called the ∗-topology, finer than τ is defined by cl∗(A) = A ∪A∗(τ , I)
when there is no chance of confusion. A∗(I) is denoted by A∗. If I is an ideal
on X, then (X, τ , I) is called an ideal topological space.

2. PRELIMINARIES

Here we will recall some definitions used in sequel.

Definition 2.1. A subset A of a topological space (X, τ) is said to be:

(i) sg-closed [6] if scl(A)⊆U, whenever A ⊆ U and U is semi-open in (X, τ),
(ii) ψ-closed [24] if scl(A)⊆U, whenever A ⊆ U and U is semi-generalised open

in (X, τ).

The complement of sg-closed and ψ-closed sets are called sg-open and ψ-open
sets respectively.

Definition 2.2. A subset A of a topological space (X, τ) is said to be

(i) pre-closed [18] if cl(int((A))⊆ A;
(ii) α-closed [22] if cl(int(cl(A)))⊆ A;
(ii) β-closed [2] if int(cl(int(A)))⊆ A.

The complement of pre-closed,α-closed and β-closed sets are called pre-open,
α-open and β-open sets respectively.

Definition 2.3. A subset A of an ideal topological space (X, τ, I) is said to be

(i) I-closed [1] if cl(A∗) ⊆A,
(ii) pre-I-closed [9] if cl∗(int(A))⊆A ,

(iii) semi-I-closed [14] if int(cl∗(A))⊆A,
(iv) α-I-closed [13] if cl∗(int(cl∗(A)))⊆ A,
(v) β-I-closed [12] if int(cl∗(int(A)))⊆ A.
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Definition 2.4. A subset A of an ideal topological space (X, τ, I) is said to be

(i) Ig-closed [10] if A∗ ⊆ U , whenever A ⊆ U and U is open in (X, τ, I),
(ii) αIg-closed [18] if A∗ ⊆ U , whenever A ⊆ U and U is α-open in (X, τ, I),

(iii) Iĝ-closed [4] if A∗ ⊆ U , whenever A ⊆ U and U is semi-open in (X, τ, I).

Definition 2.5. ([13]) A function f :(X, τ)→ (Y, σ) is said to be contra-continuous
if for every V∈ σ, f−1(V ) is open in (X, τ).

Definition 2.6. A function f :(X, τ, I)→ (Y, σ) is said to be

(i) semi-I-continuous [14] if for every V∈ σ, f−1(V ) is semi-I-open,
(ii) α-I-continuous [13] if for every V∈ σ, f−1(V ) is pre-α-open,

(iii) semi-continuous [17] if for every V∈ σ, f−1(V ) is semi-open,
(iv) α-continuous [22] if for every V∈ σ, f−1(V ) is α-open.

Definition 2.7 (23). A function f : (X, τ ,I)→( Y, σ) is called contra strongly-α-
I-continuous if f−1(V ) is strongly α-I-open in (X, τ , I) as well as BI set for every
closed set V of Y.

Lemma 2.1. If (X, τ, I) is any ideal topological space and A ⊆ X then the following
are equivalent.[21,Theorem 3.4]

(i) A is αIg-closed;
(ii) cl∗(A) ⊆ U whenever A ⊆ U and U is α-open in X.

Lemma 2.2. If (X, τ, I) is any ideal topological space and A ⊆ X then the following
are equivalent ([4,Theorem 2.5]):

(i) A is Ig-closed;
(ii) cl∗(A) ⊆ U whenever A ⊆ U and U is semi-open in X.

3. ψ-I -CLOSED SET

Definition 3.1. A subset A of an ideal topological space (X, τ, I) is said to be ψ-I-
Closed if cl∗(A) ⊆ U whenever A ⊆ U and U is ψ-open in (X, τ, I).

Theorem 3.1. Every closed set is ψ-I-closed but not conversely.

Proof. Let A ⊆ U and U is ψ-open in (X, τ, I). Since cl∗(A) ⊆ cl(A) and A is
closed, cl∗(A) ⊆ cl(A) = A ⊆ U. Therefore A is ψ-I-closed set in (X, τ, I). �
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Example 1. Let X = {a, b, c}, τ = {X,φ, {a, b}} and I = {φ, {a}}. Then ψ-I-
closed sets are {X,φ, {a} , {c} , {a, c} , {b, c}} and closed sets are {X,φ, {a, b} , {a} ,
{b}}. It is clear that {a} is ψ-I-closed set but it is not closed.

Theorem 3.2. Let (X, τ , I) be a ideal topological space. Then the following state-
ments holds:

(i) Every ψ-I-closed set is Ig-closed;
(ii) Every ψ-I-closed set is αIg-closed;

(iii) Every ψ-I-closed set is semi-closed;
(iv) Every ψ-I-closed set is semi-I-closed;
(v) Every ψ-I-closed set is Iĝ-closed;

(vi) Every ψ-I-closed set is ψ-closed;
(vii) Every ψ-I-closed set is β-I-closed.

Proof.

(i) Let A ⊆ U and U is ψ-open in (X, τ, I). By hypothesis cl∗(A) ⊆ U when-
ever A ⊆ U and U is open in X. Since every ψ-open is open, cl∗(A) ⊆ U
whenever A ⊆ U and U is open in X. Hence A is Ig closed in X.

(ii) Let A ⊆ U and U is ψ-open in (X, τ, I). By hypothesis cl∗(A) ⊆ U when-
ever A ⊆ U and U is α-open in X. By Lemma[2.5].Since every ψ-open is
α-open, cl∗(A)⊆ U whenever A ⊆ U and U is α-open in X. Hence A is
αIg-closed in X.

(iii) Let A ⊆ U and U is ψ-open in (X, τ, I). Since int(cl(A)) ⊆ cl∗(A) and A
is ψ-I-closed, int(cl(A)) ⊆ cl∗(A) = A ⊆ U. Therefore A is semi-closed
set in X.

(iv) Let A ⊆ U and U is ψ-open in (X, τ, I). Since int(cl∗(A)) ⊆ cl∗(A) and A
is ψ-I-closed, int(cl∗(A))⊆ cl∗(A) = A ⊆ U. Therefore A is semi-I-closed
set in (X, τ, I).

(v) Let A ⊆ U and U is ψ-open in (X, τ, I). By hypothesis cl∗(A) ⊆ U when-
ever A ⊆ U and U is semi-open in X.By Lemma[2.6]. Since every ψ-open
is semi-open, cl∗(A)⊆ U whenever A ⊆ U and U is semi-open in X. Hence
A is Iĝ-closed in (X, τ, I).

(vi) Let A ⊆ U and U is ψ-open in (X, τ, I). Since int(cl(A)) ⊆ cl∗(A) and A
is ψ-I-closed, int(cl(A)) ⊆ cl∗(A) = A ⊆ U. Therefore A is ψ-closed set
in (X, τ, I).
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(vii) Let A ⊆ U and U is ψ-open in (X, τ, I). Since int(cl∗(int(A))) ⊆ cl∗(A)

and A is ψ-I-closed, int(cl∗(int(A))) ⊆ cl∗(A) = A ⊆ U. Therefore A is
β-I-closed set in X.

�

But the converse of the above theorem need not be true as shown in the fol-
lowing examples.

Example 2.

(i) Let X = {a, b, c, d}, τ = {X,φ, {a} , {a, b} , {a, b, c}} and I= {φ, {c} , {d} ,
{c, d}}. Then Ig-closed sets are {X,φ, {a} , {a, b} , {a, c} , {a, d} , {a, b, c} ,
{a, b, d} , {a, c, d}}. and ψ-I-closed sets are {X,φ, {c} , {d} , {c, d} , {b, c, d}}.
It is clear that {a, d} is Ig closed set but it is not ψ-I-closed.

(ii) Let X = {a, b, c, d}, τ = {X,φ, {a} , {c} , {a, c, d}} and I= {φ, {a}}. Then
α-Ig-closed sets are {X,φ, {b} , {a, b} , {b, c} , {b, d} , {a, b, d} , {b, c, d}} and
ψ-I-closed sets are {X,φ, {b} , {b, c, d} , {b, d} , {a, b, d}}. It is clear that
{a, b} is αIg closed set but it is not ψ-I-closed.

(iii) Let X = {a, b, c, d},τ ={X,φ, {a} , {c} , {a, c, d}} and I= {φ, {a}}. Then
semi-closed sets are {X,φ, {a} , {b} , {c} , {d} , {a, b} , {a, d} , {b, c} , {b, d} ,
{c, d} , {a, b, d} , {b, c, d}} and ψ-I-closed sets are {X,φ, {b} , {b, c, d} ,
{b, d} , {a, b, d}}. It is clear that {a, b} is semi-closed set but it is not ψ-
I closed.

(iv) Let X = {a, b, c, d}, τ = {X,φ, {a, b} , {a, c} , {a, d} , {a, b, c} , {a, b, d} ,
{a, b, d}} and I = {φ, {c} , {d} , {c, d}}. Then semi-I-closed sets are
{X,φ, {b} , {c} , {d} , {b, c} , {c, d} , {b, d} {b, c, d}} and ψ-I-closed sets are
{X,φ, {c} , {d} , {c, d} , {b, c, d}}. It is clear that {b, d} is semi-I-closed set
but it is not ψ-I-closed.

(v) Let X ={a, b, c, d}, τ = {X,φ, {a} , {b, c}} and I = {φ, {c}}. Then Iĝ-
closed sets are {X,φ, {d} , {a, d} , {b, d} , {c, d} , {a, c, d} , {b, c, d}} and ψ-
I-closed sets are {X,φ, {d} , {a, d} , {c, d} , {a, c, d} , {b, c, d}}. It is clear
that {b, d} is Iĝ-closed but it is not ψ-I-closed.

(vi) Let X = {a, b, c, d}, τ = {X,φ, {a} , {a, b} , {a, b, c}} and I = {φ, {c} , {d} ,
{c, d}}. Then ψ-closed sets are {X,φ, {b} , {c} , {d} , {b, c} , {b, d} , {c, d} ,
{b, c, d}} and ψ-I-closed sets are {X,φ, {c} , {d} , {c, d} , {b, c, d}}. It is
clear that {a, d} is Ig closed set but it is not ψ-I-closed.
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(vii) Let X = {a, b, c, d}, τ = {X,φ, {a} , {a, b} , {a, b, c}} and I= {φ, {c} , {d} ,
{c, d}}. Then β-I-closed sets are {X,φ, {b} , {c} , {d} , {b, c} , {b, d} , {c, d} ,
{b, c, d}}, and ψ-I-closed sets are {X,φ, {c} , {d} , {c, d} , {b, c, d}}. It is
clear that {a, d} is β-I closed set but it is not ψ-I-closed.

Theorem 3.3.

(i) Every pre-closed set and ψ-I-closed set in (X, τ, I) are independent to each
other.

(ii) Every I-closed set and ψ-I-closed set in (X, τ, I) are independent to each
other.

Proof. Follows from the following examples. �

Example 3.

(i) Let X ={a, b, c, d}, τ = {X,φ, {a} , {c} , {a, c, d}} and I= {φ, {b}}. Here
pre-I-closed sets are {X,φ, {b} , {b, d} , {b, c, d}} and ψ-I-closed sets are
{X,φ, {d} , {a, d} , {c, d} , {a, c, d} , {b, c, d}}. It is clear that {b} is pre-
closed but it is not ψ-I-closed and also {a, c, d} is ψ-I-closed but not pre-
closed.

(ii) Let X ={a, b, c, d}, τ={X,φ, {a} , {b} , {c, d} , {a, b} , {a, c, d} , {a, c, d} ,
{b, c, d}} and I= {φ, {c}}. Here I-closed sets are {X,φ, {a} , {b} , {c} ,
{a, b} , {a, d} , {b, c} , {c, d} , {a, b, c} , {a, c, d} , {b, c, d}} and ψ - I-closed
sets are {X,φ, {a} , {b} , {c} , {d} , {a, b} , {a, c} , {a, d} , {b, c} , {b, d} ,
{c, d} , {a, b, c} , {a, b, d} , {a, c, d} , {b, c, d}}. It is clear that {d} is I-closed
but it is not ψ-I-closed and also {a, c, d} is ψ-I-closed but not I-closed.

Remark 3.1. The union of two ψ-I-closed sets need not be a ψ-I-closed set.

Example 4. Consider the ideal toplogical space (X, τ, I), where Let X ={a, b, c, d},
τ = {X,φ, {a} , {b} , {a, b} , {b, c} {a, b, c}} and I= {φ, {a}}. In this ideal space the
sets {a} and {b, c} are ψ-I-closed sets but their union {a, b, c} is not a ψ-I-closed
set.

Remark 3.2. The intersection of two ψ-I-closed sets need not be a ψ-I-closed set.

Example 5. Consider the ideal toplogical space (X, τ, I), where Let X ={a, b, c}, τ
= {X,φ, {a} , {a, b}} and I= {φ, {a}}. In this ideal space the sets {a, b} and {b, c}
are ψ-I-closed sets but their intersection {b} is not a ψ-I-closed set.
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Remark 3.3. In the following diagram we denote by arrows the implications be-
tween ψ-I-closed sets and other sets.

CS → SCS→ ICS

↘ ↑ ↗

αIgCS ← ψ − ICS→ β − ICS

↑ ↙ ↓ ↘

IĝCS → IgCS ψ −CS

4. WEAKLY ψ-I -CLOSED SET

Definition 4.1. A subset A of an ideal topological space (X, τ, I) is said to be
weakly ψ-I-closed if cl∗(int(A)) ⊆ U whenever A ⊆ U and U is ψ open in (X, τ, I).

Theorem 4.1. Every closed set is weakly ψ-I-Closed but not conversely.

Proof. Let A ⊆ U and U is ψ-open in (X, τ, I). Since cl∗(int(A)) ⊆ cl(A) and A
is closed, cl∗(int(A)) ⊆ cl(A) = A ⊆ U. Therefore A is weakly ψ-I-closed set in
(X, τ, I). �

Example 6. Let X ={a, b, c, d}, τ = {X,φ, {a} , {b} , {b, c} {a, b, c}} and I= {φ, {a}}.
Here closed sets are {X,φ, {b, c, d} , {a, c, d} , {c, d} , {a, d} , {d}} and weakly ψ I-
closed sets are {X,φ, {b, c, d} , {a, c, d} , {c, d} , {a, d} , {a} , {d}}. It is clear that
{a} is weakly ψ-I-closed but it is not closed.

Theorem 4.2. Every pre-I-closed set is weakly ψ-I-closed but not conversely

Proof. Let A ⊆ U and U is ψ-open in (X, τ, I). By hypothesis cl∗(int(A)) ⊆ U and
A is weakly ψ-I-closed in (X, τ, I). �

Example 7. Let X ={a, b, c, d}, τ = {X,φ, {a} , {b, c}} and I= {φ, {c}}. Here
pre-I-closed sets are {X,φ, {a} , {c} , {a, c} , {b, c}} and weakly ψ-I-closed sets are
{X,φ, {a} , {b} , {c} , {a, c} , {b, c}}. It is clear that {b} is weakly ψ-I-closed but it
is not pre-I-closed.

Theorem 4.3. Every α-I-closed set is weakly ψ-I-Closed but not conversely

Proof. Let A ⊆ U and U is ψ-open in (X, τ, I). By hypothesis cl∗(int(A)) ⊆
cl∗(int(cl∗(A))) and A is weakly ψ-I-closed, cl∗(int(A)) ⊆ cl∗(int(cl∗(A))) = A ⊆
U. Therefore A is weakly ψ-I-closed set in (X, τ, I). �
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Example 8. Let X ={a, b, c, d}, τ = {X,φ, {a} , {b, c}} and I= {φ, {c}}. Here
α-I-closed sets are {X,φ, {a} , {c} , {a, c} , {b, c}} and weakly ψ-I-closed sets are
{X,φ, {a} , {b} , {c} , {a, c} , {b, c}}. It is clear that {b} is weakly ψ-I-closed but it
is not α-I-closed.

Theorem 4.4. Every weakly ψ-I-closed set is I-closed set but not conversely

Proof. Let A ⊆ U and U is ψ-open in (X, τ, I). Since cl(A∗) ⊆ cl∗(int(A)) and A is
weakly ψ-I-closed, cl(A∗ ⊆ cl∗(int(A)) = A ⊆ U. Therefore A is weakly ψ-closed
set in (X, τ, I). �

Example 9. Let X ={a, b, c, d}, τ = {X,φ, {a} , {b} , {a, b} , {b, c} , {a, b, c}} and
I= {φ, {a}}. Here I-closed sets are
{X,φ, {a} , {d} , {a, d} , {b, c, d} , {b, c} , {c, d} , {a, c, d} , {b, c, d}} and weakly ψ-I-
closed sets are
{X,φ, {a} , {d} , {a, d} , {c, d} , {a, c, d} , {b, c, d}}. It is clear that {b, c} is weakly
ψ-I-closed but it is not I-closed.

Theorem 4.5. Every b-closed set is weakly ψ-I-closed set but not conversely

Proof. Let A ⊆ U and U is ψ-open in (X, τ, I). Since int(cl(int(A))) ⊆ cl∗(int(A))
and A is weakly ψ- I-closed, int(cl(int(A))) ⊆ cl∗(int(A)) = A ⊆ U. Therefore A
is b-closed set in X. �

Example 10. Let X ={a, b, c, d}, τ = {X,φ, {a} , {b, c}} and I= {φ, {a}}. Here
b-closed sets are {X,φ, {a} , {b, c}} and weakly ψ I-closed sets are
{X,φ, {a} , {b} , {c} , {a, b} , {a, c} , {b, c}}. It is clear that {b} is weakly ψ I-closed
but it is not I-closed.

Theorem 4.6. Every b-I-closed set is weakly ψ-I-closed set but not conversely

Proof. LetA ⊆ U and U is ψ-open in (X, τ, I). Since int(cl∗(int(A)))⊆ cl∗(int(A))
and A is weakly ψ I-closed, int(cl∗(int(A))) ⊆ cl∗(int(A)) = A ⊆ U. Therefore A
is b-I-closed set in X. �

Example 11. Let X ={a, b, c, d}, τ = {X,φ, {a} , {b, c}} and I= {φ, {a}}. Here
b-I-closed sets are {X,φ, {a} , {c} , {a, c} , {b, c}} and weakly ψ-I-closed sets are
{X,φ, {a} , {b} , {c} , {a, b} , {a, c} , {b, c}}. It is clear that {b} is weakly ψ-I-closed
but it is not b-I-closed.
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Theorem 4.7. Every α-closed set is weakly ψ-I-closed set but not conversely

Proof. Let A ⊆ U and U is ψ-open in (X, τ, I). Since cl∗(int(A)) ⊆ cl(int(cl(A)))

and A is α-closed, cl∗(int(A)) ⊆ cl(int(cl(A))) = A ⊆ U. Therefore A is weakly
ψ-closed set in (X, τ, I). �

Example 12. Let X ={a, b, c, d}, τ = {X,φ, {c}} and I = {φ}. Here α-closed sets
are {X,φ, {a} , {b} , {a, b}} and weakly ψ-I-closed sets are {X,φ, {a, b}}. It is clear
that {b} is weakly ψ-I-closed but it is not I-closed.

Remark 4.1. In the following diagram we denote by arrows the implications be-
tween weakly ψ-I-closed sets and other sets.

preICS → αICS→ αCS

↑ ↘ ↓ ↗

ICS ← weakly ψ − ICS← CS

↗ ↑

bICS → bCS

5. CONTRA ψ-I -CONTINUOUS MAPPING

Definition 5.1. A function f : (X, τ ,I) → (Y, σ) is called contra ψ-I-continuous
if for every V∈ σ, f−1(V ) is ψ-I-open in (X, τ , I) for every closed set V of Y.

Theorem 5.1. Let (X, τ , I)→ (Y, σ) be any mapping. Then the following state-
ments holds.

(i) Every contra α-I-continuous function is contra ψ-I-continuous.
(ii) Every contra α-continuous function is contra ψ-I-continuous.

(iii) Every contra-continuous function is contra ψ-I-continuous.
(iv) Every contra semi-I-continuous function is contra ψ-I-continuous
(v) Every contra semi-continuous function is contra ψ-I-continuous.

(vi) Every contra strongly α-continuous function is contra ψ-I-continuous.
(vii) Every contra β-I-continuous function is contra ψ-I-continuous.

(viii) Every contra β-continuous function is contra ψ-I-continuous.

Proof.
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(i) Suppose that x ∈ X and V is any closed set of Y containing f(x). Since
f is α-I continuous and cl(V) is closed in Y, f−1(V) is α-I-open and
f−1(cl(V)) is α-I closed. Now put U = f−1(v). Then we have U ∈
ψIO(x,X). This shows that f is contra ψ-I-continuous functions.

(ii) Suppose that x ∈ X and V is any closed set of Y containing f(x). Since
f is contra α-continuous and let A be a α open set. Then A = U ∩ V,
where U ∈ τ . Then int(cl(int(V ))) ⊃ A. This shows that f is contra-ψ-I
continuous function.

(iii) Suppose that x ∈ X and V is any closed set of Y containing f(x). Since
f is contra-continuous. U ∈ ψIO(x,X). Therefore f is contra-ψ-I-
continuous function.

(iv) Suppose that x ∈ X and V is any closed set of Y containing f(x). Since f
is contra semi-I continuous and every ψ-I set is semi-I-open. Therefore
f is contra ψ-I-continuous function.

(v) Suppose that x ∈ X and V is any closed set of Y containing f(x). Since f
is contra semi-continuous and every ψ-I set is semi-I-open. Therefore
f is contra ψ-I-continuous function.

(vi) Suppose that x ∈ X and V is any closed set of Y containing f(x). Since f
is contra strongly α-I-continuous and every ψ-I set is α-I-open as well
as BI set for every closed set V of Y. Therefore f is contra ψ-I-continuous
function.

(vii) Suppose that x ∈ X and V is any closed set of Y containing f(x). Since
f is contra β-I continuous and every β-I set is ψ-I-open. Therefore f is
contra ψ-I-continuous function.

(viii) Suppose that x ∈ X and V is any closed set of Y containing f(x). Since
f is contra β-continuous and every ψ-I set is α-I-open. Therefore f is
contra ψ-I-continuous function.

�

The converse of Theorem 5.2 are need not be true as shown in the following
examples.

Example 13.

(i) Let X = {a, b, c}, τ1 = {X,φ, {a} , {a, b}}, τ2 = {X, {φ} , {a} , {c} , {b, c}}
and I= {φ} , {a} Define the identity mapping f :(X, τ1, I) → (X, τ2) is
contra α-I-continuous but not contra ψ-I-continuous.
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(ii) Let X = {a, b, c}, τ1 = {X,φ, {a} , {a, b}}, τ2 = {X, {φ} , {a} , {c} , {b, c}}
and I= {φ} , {a} Define the identity mapping f :(X, τ1, I) → (X, τ2) is
contra α-continuous but not contra ψ-I-continuous.

(iii) Let X = {a, b, c}, τ1 = {X,φ, {a} , {a, b}}, τ2 = {X, {φ} , {a} , {c} , {b, c}}
and I= {φ} , {a} Define the identity mapping f :(X, τ1, I) → (X, τ2) is
contra-continuous but not contra ψ-I-continuous.

(iv) Let X = {a, b, c}, τ1 = {X,φ, {a} , {a, b}}, τ2 = {X, {φ} , {a} , {c} , {b, c}}
and I= {φ} , {a} Define the identity mapping f :(X, τ1, I) → (X, τ2) is
contra semi-I-continuous but not contra ψ-I-continuous.

(v) Let X = {a, b, c}, τ1 = {X,φ, {a} , {a, b}}, τ2 = {X, {φ} , {a} , {c} , {b, c}}
and I= {φ} , {a} Define the identity mapping f :(X, τ1, I) → (X, τ2) is
contra semi-continuous but not contra ψ-I-continuous.

(vi) Let X = {a, b, c}, τ1 = {X,φ, {a} , {a, b}}, τ2 = {X, {φ} , {a} , {c} , {b, c}}
and I= {φ} , {a} Define the identity mapping f :(X, τ1, I) → (X, τ2) is
contra strongly α-I-continuous but not contra ψ-I-continuous.

(vii) Let X = {a, b, c}, τ1 = {X,φ, {a} , {a, b}}, τ2 = {X, {φ} , {a} , {c} , {b, c}}
and I= {φ} , {a}. Define the identity mapping f :(X, τ1, I) → (X, τ2) is
contra β-I-continuous but not contra ψ-I-continuous.

(viii) Let X = {a, b, c}, τ1 = {X,φ, {a} , {a, b}}, τ2 = {X, {φ} , {a} , {c} , {b, c}}
and I= {φ} , {a} Define the identity mapping f :(X, τ1, I) → (X, τ2) is
contra β-continuous but not contra ψ-I-continuous.

Remark 5.1. In the following diagram we denote by arrows the implications be-
tween ψ-I-closed sets and other sets.

cCS cSCS cαICS

↘ ↓ ↙

cSICS → cψ − ICS ← β − ICS

↗ ↑ ↖

cβICS cβCS csψ −CS
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