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ASYMPTOTIC DENSITY OF PELLIAN TRIPLETS ASSOCIATED WITH
U2 − DV 2 = −M

BILKIS M. MADNI1 AND DEVBHADRA V. SHAH

ABSTRACT. For positive integers m, D and V, triplet (−m,D, V ) is defined to
be a Pellian triplet if −m+DV 2 is a square. Clearly, for any such triplet we have
U2−DV 2 = −m, for some integer U . In this paper, we calculate the asymptotic
density of Pellian triplets (−m,D, V ) in the cuboid 1 ≤ m ≤ Z1, 1 ≤ D ≤ Z2

and 1 ≤ V ≤ Z3, for any given large positive integers Z1, Z2, Z3.

1. INTRODUCTION

Shah [9] defined triplet (m,D, V ) to be a Pellian triplet if m+DV 2 is a square.
He related this triplet with the Pell’s equation U2 − DV 2 = m and obtained
the asymptotic value of F (Z1, Z2, Z3), the total number of such triplets in the
cuboid 1 ≤ m ≤ Z1, 1 ≤ D ≤ Z2 and 1 ≤ V 2 ≤ Z3 for any given positive
integers Z1, Z2, Z3 under certain necessary conditions. Shah [10] also obtained
the asymptotic value of F (Z,Z, Z) and obtained omega result for its error term.

In the present paper, we modify the above definition and consider the Pel-
lian triplets related with the Pellian equation U2 − DV 2 = −m and obtain the
asymptotic density of the total number of such triplets in the given cuboid.

Definition 1.1. The triplet (−m,D, V ) is defined to be a Pellian triplet if−m+DV 2

is a square for positive integers m, D and V.
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It is easy to see that every Pellian triplet (−m,D, V ) is associated with U2 −
DV 2 = −m for some integer U, which justify the name ‘Pellian triplet’. For
simplicity we write pltp for Pellian triplet. Clearly every square number is rep-
resented by at least one pltp; for, it is sufficient to consider V=1. We note that
even if (m, D, V) is a pltp, (−m,D, V ) may not be pltp. This is because for any
given positive integers m, D and V, if the Pellian equation U2 − DV 2 = m has
solution then it need not imply that U2−DV 2 = −m also has solution. For com-
pleteness we recall that there are many papers which considered different types
of Pell’s equation. Many authors such as Andreescu et el [1], Burton [3], Kaplan
and Williams [4], Le Veque [5], Madni and Shah [6], Matthews [7], Mollin et et
[8], Steuding [11], Stevenhagen [12], Telang [13] and others considered some
specific Pell equations and their integer solutions.

2. VALUE OF F(Z1, Z2, Z3 ):

We consider the triad m, D and V-axes and the cuboid 1 ≤ m ≤ Z1, 1 ≤
D ≤ Z2, 1 ≤ V ≤ Z3. For convenience we select m and D-axes as x and
y axes respectively. Thus, in the above cuboid, we have Z3 planes parallel
to mD-plane for each V ≤ Z3. In each of these planes, we consider rect-
angles bounded by m and D-axes for a fixed V. We denote the total num-
ber of pltps in each of this rectangles by FV (Z1, Z2, Z3), whose value will be
F (Z1, Z2, Z3) =

∑
V≤Z3

FV (Z1, Z2, Z3). Here we obtain the value of F (Z1, Z2, Z3)

under the condition that Z1 ≤ Z2.
Throughout, by C we mean Euler’s constant. The following lemma contain-

ing some asymptotic formulas has been stated over here since it is (directly or
indirectly) used in the paper.

Lemma 2.1. (Apostol [2])
(a)

∑
n≤x

1
n

= log x+ C +O( 1
x
).

(b)
∑

n≤x
1
ns

= x1−s

1−s + ζ(s) +O(x−s); s > 0, s 6= 1.
(c)

∑
n≤x n

α = xα+1

α+1
+O(xα); for α ≥ 0.

Theorem 2.1. Uf Z1 ≤ Z2, then

F(Z1, Z2, Z3 )=2Z
3/2
1

3
( 1
Z3
− ζ(2)) + Z1

√
Z2(logZ3 + C) + O(

√
Z1Z3)

+ O(
z1
√
z2

z3
+ O(

√
Z2Z

2
3) + O(

z21

z
1/2
2

) + O( z1

z
1/2
2

logZ3).
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Proof. From the definition of pltp, it is evident that with every pltp (−m,D, V )

there is related a Pellian equation U2 −DV 2 = −m. So for fixed V = γ(1 ≤ γ ≤
Z3) and for some positive integer t, we have

(2.1) t2 = −m+Dγ2.

Here we note that any pltp counted for F (Z1, Z2, Z3) will always represent a
square not exceeding Z1+Z2Z

2
3 . Now line (2.1) is a linear Diophantine equation

in m and D which always has an integral solution. Since 1 ≤ m ≤ Z1 and
1 ≤ D ≤ Z2, we get a rectangle in second quadrant which contains within
the lattice points (−m,D) satisfying (2.1). We thus consider a rectangle having
vertices at origin O,R(−Z1, 0), T (0, Z2) and S(−Z1, Z2) as shown in figure 1.

Since 1 ≤ V ≤ Z3, for a fixed value V = γ we first count the number of pltps
in this rectangle and then sum it over all values of V. We now draw the lines
(2.1) for different values of t in mD-plane in the fixed rectangle Rγ. We first
consider line for t =

√
Z1 (say l1) which passes through the point R(−Z1, 0). We

also consider another line for t = γ
√
Z2 (say l2) which passes through the point

T (0, Z2) as shown in the figure 1.

Figure 1

Now these two lines divide the rectangle ORST in three convex regions say A,
B and C, where A is triangle VOR, B is parallelogram TURV and C is a triangle
UST. For any fixed value γ , we denote the total number of pltps in the region
A, B and C by FA

γ (Z1, Z2), FB
γ (Z1, Z2) and FC

γ (Z1, Z2) respectively.



5778 B.M. MADNI AND D.V. SHAH

We first consider the ∆VOR (region A) and take any line (2.1) parallel to l1

in this region as shown in figure 2. Let it intersect m and D-axes in P and Q
having coordinates (−t2, 0) and (0, t

2

γ2
) respectively. Since P is a lattice point, all

the lattice points on ~PQ are given by parametric equation m = −t2 + γ2u, D=u;
for integers u.

Figure 2

We restrict the value of D such that 0 < D ≤ t2

γ2
, i.e. 0 < u ≤ t2

γ2
. Then it

is easily seen that there are [ t
2

γ2
] lattice points on P̄Q. Also value of −t2 ranges

from −Z1 to 0. Thus

(2.2) FA
γ (Z1, Z2) =

∑
t≤
√
Z1

[
t2

γ2
]

We next consider region B (which is a parallelogram TURV). Here we note that
line t = γ

√
Z2 (i.e. l2) intersect m-axis at the point, say M having coordinate

(−γ2Z2, 0). We take any line (2.1) parallel to l1(or l2) in the region as shown
in figure 3. Let it intersect m and D-axes in P

′
1 and Q

′ respectively. Also let it
intersect ŪR in P ′. Then the coordinates of P ′ and Q′ are (−Z1,

t2−Z1

γ2
and (0, t

2

γ2
)

respectively. Also the coordinate of P ′1 is (−t2, 0). Since P ′1 is a lattice point, all
the lattice points on ~P ′1Q

′ are given by m = −t2 + γ2u , D = u; u ∈ Z.



ASYMPTOTIC DENSITY OF PELLIAN TRIPLETS ASSOCIATED WITH U2 −DV 2 = −M 5779

Figure 3

Using the coordinates of P ′ and Q
′, it is easily observed that there are [Z1

γ2
]

lattice points on ¯P ′Q′. Also the value of −t2 ranges from −γ2Z2 to −Z1. Thus
we have

(2.3) FB
γ (Z1, Z2) =

∑
√
Z1<t≤γ

√
Z2[

Z1

γ2
].

We finally consider region C, which is a triangle STU. We consider any line
through S parallel to l2 and suppose it intersect m-axis at the point say N. Then it
can be observed that coordinate of N and U are (−Z1−γ2Z2, 0) and (−Z1,

γ2Z2−Z1

γ2)

respectively. Here too we take any line (2.1) parallel to l2 in ∆STU as shown
in figure 4. Let it intersect m-axis at P ′2 and S̄T at Q′′. Then for Q′′ we have
D = Z2,m = γ2Z2−t2. Also for P ′2 we have D=0, m = −t2. Thus the coordinates
of Q′′ and P ′2 are (γ2Z2−t2, Z2) and (−t2, 0) respectively. Also P ′′ ≡ (−Z1,

t2−Z1

γ2
).

Since P
′
2 is a lattice point, all the lattice points on ~P ′′Q′′ are given by m =

−t2 + γ2u, D = u; u ∈ Z.
We next calculate the number of lattice points on ¯P ′′Q′′. For that using the

coordinates of P ′′ and Q
′′, we observe that there are [Z2 − t2−Z1

γ2
] lattice points
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on ¯P ′′Q′′. Also the value of −t2 ranges from −Z1 − γ2Z2 to −γ2Z2. This gives

(2.4) FC
γ (Z1, Z2) =

∑
γ
√
Z2<t≤

√
Z1+γ2Z2

[Z2 −
t2 − Z1

γ2
]

Figure 4

Hence for the rectangle Rγ, by (2.2), (2.3) and (2.4) the total number of pltps
are given by

FA
γ (Z1, Z2) + FB

γ (Z1, Z2) + FC
γ (Z1, Z2)

=
∑

t≤
√
Z1

[ t
2

γ2
]+

∑
√
Z1<t≤γ

√
Z2

[Z1

γ2
] +

∑
γ
√
Z2<t≤

√
Z1+γ2Z2

[Z2 − t2−Z1

γ2
].

Hence by total number of required pltps is

F (Z1, Z2, Z3)

=
∑
γ≤Z3

{
∑
t≤
√
Z1

[
t2

γ2
] +

∑
√
Z1<t≤γ

√
Z2

[
Z1

γ2
] +

∑
γ
√
Z2<t≤

√
Z1+γ2Z2

[Z2 −
t2 − Z1

γ2
]}

= S1 + S2 + S3,

(2.5)

(say), where S1 =
∑

γ≤Z3
{
∑

t≤
√
Z1

[ t
2

γ2
], S2 =

∑
√
Z1<t≤γ

√
Z2

[Z1

γ2
] and

S3 =
∑

γ
√
Z2<t≤

√
Z1+γ2Z2

[Z2 −
t2 − Z1

γ2
].

We now calculate the values of S1, S2 and S3 separately. First,
S1 =

∑
γ≤Z3
{
∑

t≤
√
Z1

[ t
2

γ2
] =

∑
γ≤Z3

∑
t≤
√
Z1
{ t2
γ2

+O(1)}
= ( (

√
Z1)3

3
+O(Z1))

∑
γ≤Z3

1
γ2

+O(Z
1/2
1 Z3)
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= ( (
√
Z1)3

3
+O(Z1))(

−1
Z3

+ ζ(2) +O( 1
Z2
3
)) +O(Z

1/2
1 Z3).

Thus

(2.6) S1 =
1

3
(ζ(2)− 1

Z3

)Z
3/2
1 +O(

√
Z1Z3) +O(

Z
3/2
1

Z2
3

) +O(Z1).

Next
S2 =

∑
γ≤Z3

∑
√
Z1<t≤γ

√
Z2

[Z1

γ2
] =
√
Z2

∑
γ≤Z3
{Z1

γ
+O(γ)} -

√
Z1

∑
γ≤Z3
{Z1

γ2
+O(1)}

= Z1

√
Z2(logZ3+C+O( 1

Z3
) - Z3/2

1 (ζ(2)− 1
Z3

+O( 1
Z2
3
)) +O(

√
Z2Z

2
3) +O(

√
Z1Z3).

Thus

S2 = Z1

√
Z2(logZ3 + C)− Z3/2

1 (ζ(2)− 1

Z3

)

+O(
Z1

√
Z2

Z3

) +O(
Z

3/2
1

Z2
3

) +O(
√
Z2Z

2
3).

(2.7)

Finally, we estimate S3. For any γ, clearly we have
√
Z1 ≤

√
Z2 ≤ γ

√
Z2. Then√

Z1 + γ2Z2 = γ
√
Z2(1 + Z1

γ2Z2
)1/2

= γ
√
Z2{1 + Z1

2γ2Z2
− Z2

1

8γ4Z2
2

+ O(
Z3
1

γ6Z3
2
)}.

Thus
√
Z1 + γ2Z2 = γ

√
Z2 + Z1

2γ
√
Z2

- Z2
1

8γ3Z
3/2
2

+ O(
Z3
1

γ5Z
5/2
2

) = δ (say). This gives

δ − γ
√
Z2 =

Z1

2γ
√
Z2

− Z2
1

8γ3Z
3/2
2

+O(
Z3

1

γ5Z
5/2
2

).

Also, for the above value of δ, we have δ2 = γ2Z2{1 + Z1

γ2Z2
+ O(

Z3
1

γ6Z3
2
)} and

δ3 = γ3Z
3/2
2 {1 + 3Z1

2γ2Z2
+

3Z2
1

8γ4Z2
2

+O(
Z3
1

γ6Z3
2 )
}. Thus

S3 =
∑

γ≤Z3

∑
γ
√
Z2<t≤

√
Z1+γ2Z2

[Z2 − t2−Z1

γ2
]

=
∑

γ≤Z3

∑
γ
√
Z2<t≤δ{Z2 − t2−Z1

γ2
+O(1)}

= Z2

∑
γ≤Z3

∑
γ
√
Z2<t≤δ 1−

∑
γ≤Z3

1
γ2

∑
γ
√
Z2<t≤δ(t

2 − Z1)

+O(
∑

γ≤Z3
(δ − γ

√
Z2))

= Z2

∑
γ≤Z3

(δ − γ
√
Z2)−

∑
γ≤Z3

1
γ2
{2δ3+3δ2+δ

6
− 2γ3Z

3/2
2 +3γ2Z2+γZ

1/2
2

6

−Z1(δ − γ
√
Z2)}+O(

∑
γ≤Z3
{ Z1

2γ
√
Z2
− Z2

1

8γ3Z
3/2
2

+O(
Z3
1

γ5Z
5/2
2

)})

= Z2

∑
γ≤Z3
{ Z1

2γ
√
Z2
− Z2

1

8γ3Z
3/2
2

+O(
Z3
1

γ5Z
5/2
2 )
}

−
∑

γ≤Z3

1
6γ2
{2γ3Z3/2

2 + 3Z1

√
Z2γ +

3Z2
1

4γ
√
Z2

+O(
Z3
1

γ3Z
3/2
2

)
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+3γ2Z2 + 3Z1 +O(
Z3
1

γ4Z2
2
) + γ

√
Z2 + Z1

2γ
√
Z2
− Z2

1

8γ3Z
3/2
2

+O(
Z3
1

γ5Z
5/2
2

)− 2γ3Z
3/2
2 − 3γ2Z2 − γ

√
Z2 − 3Z2

1

γ
√
Z2

+
3Z3

1

4γ3Z
3/2
2

+O(
Z4
1

γ5Z
5/2
2

)}+O( Z1

Z
1/2
2

(logZ3 + C +O( 1
Z3

)))

+O(
Z2
1

Z
3/2
2

(− 1
2Z2

3
+ ζ(3) +O(Z−33 )))

= (Z1
√
Z2

2
− Z1

√
Z2

2
)
∑

γ≤Z3

1
γ
− Z1

2

∑
γ≤Z3

1
γ2

+(− Z2
1

8Z
3/2
2

− Z2
1

8
√
Z2
− Z1

12
√
Z2

+
Z2
1

2
√
Z2

)
∑

γ≤Z3

1
γ3

+(
Z2
1

48Z
3/2
2

− Z3
1

8Z
3/2
2

)
∑

γ≤Z3

1
γ5

+O(
Z3
1

Z
3/2
2

∑
γ≤Z3

1
γ5

)

+O(
Z4
1

Z
5/2
2

∑
γ≤Z3

1
γ7

) +O( Z1

Z
1/2
2

logZ3) +O(
Z2
1

Z
3/2
2

)

= −Z1

2
{− 1

Z3
+ ζ(2) +O( 1

Z2
3
)}+ (− Z1

12
√
Z2

+
Z2
1 (3Z2−1)
8Z

3/2
2

)

{− 1
2Z2

3
+ ζ(3) +O(Z−33 )}+ (

Z2
1 (1−6Z1)

48Z
3/2
2

){− 1
4Z4

3
+ ζ(5) +O(Z

(
3 − 5))}

+O(
Z3
1

Z
3/2
2

) +O(
Z4
1

Z
5/2
2

) +O( Z1

Z
1/2
2

logZ3) +O(
Z2
1

Z
3/2
2

).

Since Z1 ≤ Z2, we get
S3 = 1

2
Z1(

1
Z3
− ζ(2)) + (− Z1

12Z
1/2
2

+
3Z2

1

8Z
1/2
2

)(ζ(3)− 1
2Z2

3
)

+O(Z1

Z2
3
) +O(

Z2
1

Z
1/2
2

) +O( Z1

Z
1/2
2

logZ3).

This gives

(2.8) S3 =
1

2
Z1(

1

Z3

− ζ(2)) +O(
Z1

Z2
3

) +O(
Z2

1

Z
1/2
2

) +O(
Z1

Z
1/2
2

logZ3).

Finally using (2.6), (2.7) and (2.8) in (2.5) we get the asymptotic value for
the total number of Pellian triplets in the given cuboid as

F (Z1, Z2, Z3)=
2Z

3/2
1

3
( 1
Z3
− ζ(2)) + Z1

√
Z2(logZ3 + C)

+O(
√
Z1Z3) +O(Z1

√
Z2

Z3
+O(

√
Z2Z

2
3)

+O(
Z2
1

Z
1/2
2

) +O( Z1

Z
1/2
2

logZ3). �

The following result gives the asymptotic density of the total number of Pellian
triplets in the given cuboid.

Corollary 2.1. In the cuboid 1 ≤ m ≤ Z1, 1 ≤ D ≤ Z2 and 1 ≤ V ≤ Z3, the
Pellian triplets (−m,D, V ) has the asymptotic density

2Z
1/2
1

3Z2Z3
( 1
Z3
− ζ(2)) + 1

Z
1/2
2 Z3

(logZ3 + C) +O( 1

Z
1/2
1 Z2

)

+O( 1

Z
1/2
2 Z3

) +O( Z3

Z1Z
1/2
2

) +O( logZ3

Z
3/2
2 Z3

).
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Proof. The result follows easily from the value of F (Z1, Z2, Z3) and the fact that
Z1 ≤ Z2. �
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