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SOME NOTES ON CUBIC SPLINE OF PERIODIC FUNCTION

SHPËTIM REXHEPI1, EGZONA ISENI, AND SAMET KERA

ABSTRACT. A spline function is a piecewise polynomial function of order m

joined smoothly so that it has m− 1 continuous derivatives. In [1] interpolation
of cubic spline function is discussed and this paper extends the results on third
order spline of periodic function.

1. INTRODUCTION

In approximation theory spline interpolation, as a part of osculatory interpo-
lation, is a form of interpolation where the interpolant is an adequate piecewise
function which represents spline function. This kind of interpolation was intro-
duced by I. J. Schoenberg in 1946 [5].

The spline function avoids the discontinuities in slope that occur with ordinary
piecewise functions, except that in the n-th derivative where there is flexibility
with respect to continuity.

The aim of this paper is to present for periodic functions belonging to C2[0, 2π]

the analogues of the recent developments on cubic spline functions and their
role in approximation theory.

Initially, we will give some concepts, definitions and notations.

Definition 1.1. Let ∆ : a = x0 < x1 < x2 < ... < xn = b be a subdivision of the
segment [a, b]. A function Smf∆ : [a, b] → R,m ∈ N is called a spline of order m
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with respect to the subdivision ∆ if Smf∆ ∈ Cm−1 , in other words it has continuous
derivatives up to order m− 1 in [a, b] and reduces to a polynomial of order smaller
or equal to m in each of the intervals (−∞, x1), [x1, x2), ..., [xn,∞).

By Smn we denote all splines of order m for a fixed subdivision of segment in
n pieces. Smn is linear space of dimension m+ n.

Lemma 1.1. Let f(x) ∈ C2[a, b]. For each subdivision of the segment [a, b],

∆ : a = x0 < x1 < x2 < ... < xn = b

there exists one and only one spline function in S3
n denoted by S3

f∆, such that

S3
f∆(xi) = f(xi), i = 0, n

and (
S3
f∆

)′′
(x0) = 0 =

(
S3
f∆

)′′
(xn).

Definition 1.2. The inner product〈
f, g
〉
n

=

∫ 2π

0

f (n)(t)g(n)(t)dt

is defined for functions f and g which have a square-integrable n-th derivative on

segment [0, 2π]. We define the pseudo-norm ‖f‖n =

√〈
f, f
〉
n

on linear spaces

Cn[0, 2π] where ‖f‖n = 0 iff f(t), t ∈ [0, 2π] is polynomial up to order n− 1 [2].

2. SOME EXAMPLES OF SPLINES

Example 1. B0− splines. These functions are splines of order 1 and B1− splines:
these functions are splines of order 1 and reach a peak at x = xi+1 and is upward
(downward) sloping for x < xi+1(x > xi+1) [3].

B0
i =

{
1 xi < x < xx+1

0 elsewhere

and

B1
i =


x−xi

xi+1−xi xi < x < xi+1

xi+2−x
xi+1−xi xi+1 < x < xi+2

0 elsewhere

.
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Example 2. Higher order spline functions are defined by the recursion:

Bn
i (x) =

( x− xi
xi+1 − xi

)
Bn−1
i (x) +

( xi+n+1 − x
xi+n+1 − xi+1

)
Bn−1
i+1 (x).

Example 3. Cubic splines. These functions are splines of order three and its ana-
lytic expression is

S3
f∆ = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

for x ∈ [xi, xi+1] where

ai = f(xi) = fi, bi =
fi+1 − fi
hi+1

− hi+1

6
(2ψi + ψi+1), ci =

ψi
2
, di =

ψi+1 − ψi
6hi+1

ψi =
(
S3
f∆

)′′
(xi) are solutions of system of linear equations

µ1ψ0 + 2ψ1 + ν1ψ2 = λ1

µ2ψ1 + 2ψ2 + ν2ψ3 = λ2

...
µn−1ψn−2 + 2ψn−1 + νn−1ψn = λn−1

as amended by the given boundary conditions,

hi = xi − xi−1, µi =
hi

hi + hi+1

, νi = 1− µ1, λi = 6f [xi−1, xi, xi+1],

where f [xi−1, xi, xi+1] is second order divided difference.

Example 4. A cubic periodic spline S3
f∆ on segment [0, 2π] segment is a spline

function of order three such that
(
S3
f∆

)(k)

(0) =
(
S3
f∆

)(k)

(2π), k = 0, 1, 2, where

∆ = {0 = x0 < x1 < ... < xn = 2π} and f(x) ∈ C2[0, 2π] is 2π−periodic [4].

Note: The interpolating function S3
f∆ minimizes the value

∫ 2π

0
(g′′(t))2dt among

all functions g ∈ C2 which coincide with function f(x) at the points xi, i = 0, n.

3. MAIN RESULTS

Theorem 3.1. If f(x) ∈ C2[0, 2π] is 2π-periodic then for some c intermediate to
xi−1, xi and xi+1

−4.5− (f ′′(c))2

2
≤ (S3

f∆)′′(xi) ≤ 4.5 +
(f ′′(c))2

2
, i = 1, n− 1,

where ∆ = {0 = x0 < x1 < ... < xn = 2π}.



5830 S. REXHEPI, E. ISENI, AND S. KERA

Proof. Let us take ψk = max1≤i≤n−1 |ψi|. Then using Example 1 we get

max
1≤i≤n−1

|λi| ≥ |λk| ≥ 2|ψk| − µk|ψk−1| − νk|ψk+1| ≥

≥ 2|ψk| − µk|ψk| − νk|ψk| = |ψk|(2− (µk + νk)) =

= |ψk|(2− 1) = |ψk| = max
1≤i≤n−1

|λi|.

Consequently

max
1≤i≤n−1

∣∣∣(S3
f∆

)′′
(xi)

∣∣∣ ≤ max
1≤i≤n−1

|λi|.

Now from obtained result, the Arithmetic-Geometric inequality and the Mean-
Value theorem as applied to the second order difference assure that

max
1≤i≤n−1

∣∣∣(S3
f∆

)′′
(xi)

∣∣∣ ≤ max
1≤i≤n−1

∣∣∣6f [xi−1, xi, xi+1]
∣∣∣ =

= 6
f ′′(c)

2
≤ 9 + (f ′′(c))2

2
, i = 1, n− 1,

where c intermediate to xi−1, xi and xi+1.
Consequently ∣∣∣(S3

f∆

)′′
(xi)

∣∣∣ ≤ 9 + (f ′′(c))2

2
, i = 1, n− 1,

which yields to our result.
�

Theorem 3.2. If the Fourier series of periodic function f(x) ∈ C2[−π, π] contains
only cosine terms, then the Fourier series of the interpolating spline S3

f∆, where

∆ = {−π = x−n < x−(n−1) < ... < x−1 < x0 < x1 < ... < xn−1 < xn = π}

such that |x−i| = |xi|, i = 1, n, also contains only cosine terms.

Proof. Let (S3
f∆)∗ : [−π, π] → R, (S3

f∆)∗ ∈ C2[−π, π] be another function such
that S3

f∆(−x) = (S3
f∆)∗(x) and f(x) = a0

2
+
∑∞

k=1 ak cos kx where ak, k = 1, 2, ..

are Fourier coefficients of function f(x) ∈ C2[−π, π].
Now we have

(S3
f∆)∗(xi) = S3

f∆(x−i) = f(x−i) = f(−xi) =
a0

2
+
∞∑
k=1

ak cos k(−xi) =

=
a0

2
+
∞∑
k=1

ak cos kxi = f(xi), i = 1, n.
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Consequently (S3
f∆)∗ : [−π, π] → R represents a spline for function f(x) and

from the uniqueness of the interpolating spline we get that(S3
f∆)∗ = S3

f∆ respec-
tively S3

f∆(x−i) = S3
f∆(−xi) = S3

f∆(xi), i = 1, n, which implies that the Fourier
series of the spline contains only cosine terms. �

Theorem 3.3. If the Fourier series of periodic function f(x) ∈ C2[−π, π] contains
only sine terms, then the Fourier series of the interpolating spline S3

f∆, where

∆ = {−π = x−n < x−(n−1) < ... < x−1 < x0 < x1 < ... < xn−1 < xn = π}

such that |x−i| = |xi|, i = 1, n, also contains only sine terms.

Proof. Let (S3
f∆)∗ : [−π, π] → R, (S3

f∆)∗ ∈ C2[−π, π] be another function such
that (S3

f∆)∗(x) = −S3
f∆(−x) and f(x) =

∑∞
k=1 ak sin kx where ak, k = 1, 2, .. are

Fourier coefficients of function f(x) ∈ C2[−π, π].
Now we have

−(S3
f∆)∗(xi) = S3

f∆(x−i) = f(x−i) = f(−xi) =
∞∑
k=1

ak sin k(−xi) =

= −
∞∑
k=1

ak sin kxi = −f(xi), i = 1, n.

Consequently (S3
f∆)∗ : [−π, π] → R represents a spline for function f(x) and

from the uniqueness of the interpolating spline we get that (S3
f∆)∗ = S3

f∆ re-
spectively S3

f∆(xi−1) = S3
f∆(−xi) = −S3

f∆(xi), i = 1, n, which implies that the
Fourier series of the spline contains only sine terms. �

Theorem 3.4. Let f(x) ∈ C2[0, 2π] and the spline s ∈ Sn3 , be its interpolant, i.e.
s(xi) = f(xi), i = 1, n. If f and s satisfy the boundary conditions
s′(0) = f ′(0), s′(2π) = f ′(2π), s′′(0) = f ′′(0) and s′′(2π) = f ′′(2π), then

(‖f − s‖2)2 = (‖f‖2 − ‖s‖2)(‖f‖2 + ‖s‖2).

Proof. We have that (‖f − s‖2)2 = (‖f‖2 − ‖s‖2)(‖f‖2 + ‖s‖2) − 2
〈
f − s, s

〉
2
.

Since f(x) ∈ C2[0, 2π] and s ∈ C2[a, b] has continuous derivatives of order 2, by
successive integrations, using the boundary conditions and since s′′′(x) = 0 we
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find that 〈
f − s, s

〉
2

= −
∫ 2π

0

(
f(x)− s(x)

)
s′′′(x)dx

= −
n∑
i=1

∫ xi

xi−1

(
f(x)− s(x)

)
s′′′(x)dx

= −
n∑
i=1

(
f(x)− s(x)

)
s′′′(x)dx

∣∣∣xi
xi−1

= 0.

Therefore

(‖f − s‖2)2 = (‖f‖2 − ‖s‖2)(‖f‖2 + ‖s‖2).

�

Theorem 3.5. Let f(x) = 0 and the spline s ∈ Sn3 be its interpolant, i.e. s(xi) =

f(xi), i = 1, n. If f and s satisfy the boundary conditions s′(0) = f ′(0),

s′(2π) = f ′(2π), s′′(0) = f ′′(0) and s′′(2π) = f ′′(2π), then s = 0.

Proof. For f(x) = 0, from Theorem 3.4, we have:

(‖0− s‖2)2 = 0− (‖s‖2)2 ⇒ (‖s‖2)2 = 0⇒ ‖s‖2 = 0.

Now from the boundary conditions since s(i)(0) = s(i)(2π) = 0, i = 1, 2 ⇒
s = 0. �
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