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SOME NOTES ON CUBIC SPLINE OF PERIODIC FUNCTION
SHPETIM REXHEPI!, EGZONA ISENI, AND SAMET KERA

ABSTRACT. A spline function is a piecewise polynomial function of order m
joined smoothly so that it has m — 1 continuous derivatives. In [1] interpolation
of cubic spline function is discussed and this paper extends the results on third
order spline of periodic function.

1. INTRODUCTION

In approximation theory spline interpolation, as a part of osculatory interpo-
lation, is a form of interpolation where the interpolant is an adequate piecewise
function which represents spline function. This kind of interpolation was intro-
duced by I. J. Schoenberg in 1946 [5].

The spline function avoids the discontinuities in slope that occur with ordinary
piecewise functions, except that in the n-th derivative where there is flexibility
with respect to continuity.

The aim of this paper is to present for periodic functions belonging to C?[0, 27|
the analogues of the recent developments on cubic spline functions and their
role in approximation theory.

Initially, we will give some concepts, definitions and notations.

Definition 1.1. Let A : a = 2y < 21 < 23 < ... < x,, = b be a subdivision of the
segment [a,b]. A function S}, : [a,b] — R,m € N is called a spline of order m
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with respect to the subdivision A if ST, € C™~', in other words it has continuous
derivatives up to order m — 1 in [a, b] and reduces to a polynomial of order smaller
or equal to m in each of the intervals (—oo, x1), [x1, Z2), ..., [Ty, 00).

By S]" we denote all splines of order m for a fixed subdivision of segment in
n pieces. S/ is linear space of dimension m + n.

Lemma 1.1. Let f(x) € C?[a,b]. For each subdivision of the segment [a, b],
Aca=xg<r1 <1< ..<x,=0
there exists one and only one spline function in S;, denoted by S, such that
Sialwi) = f(z:),i=0,n

and
"

(S]%A)H(:vo) = 0= (%) (@)

Definition 1.2. The inner product

(o), = [ rowg e

is defined for functions f and g which have a square-integrable n-th derivative on
segment [0,27]. We define the pseudo-norm | f||, = 1/<f,f> on linear spaces
C™0, 2r] where || f||. = 0 iff f(t),t € [0,27] is polynomial up to order n — 1 [2].

2. SOME EXAMPLES OF SPLINES

Example 1. B°— splines. These functions are splines of order 1 and B*— splines:
these functions are splines of order 1 and reach a peak at x = ;1 and is upward
(downward) sloping for v < x;1(x > x;41) [3].

BQ:{I Ty < T < Tyqq
! 0 elsewhere
and
% T, < T < Tig1
B} = ﬁ% Tit1 < T < Tjya -

0 elsewhere
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Example 2. Higher order spline functions are defined by the recursion:
T — x; _ Titpi1 — T _
Bi(r)= (=) B @)+ () Bl ),
Example 3. Cubic splines. These functions are splines of order three and its ana-
lytic expression is
SJ?ZA =a; + bi(x — ;) + ci(x — 33)* + di(x — ;)
for x € [x;, x;11] where

a; = f(z;) = fi,bi = %7611. - Vi1 — i

Jivi— fi hin
— 20 + i), ¢ =
hit1 6 (2 +Yira)s 2 6hiy1

"
U = (S? A) (x;) are solutions of system of linear equations

o + 291 + 11Pe = Ny
Hotn + 290y 4 19thg = Ay

Nn—1¢n—2 + 21/}11—1 + Vn—1¢n = )\n—l
as amended by the given boundary conditions,

hi =z —xi_q, p; = =1—p, \i = 6f[xio1, T, i),

—
hi + hiyq
where f[x;_1,x;, z;41] is second order divided difference.

Example 4. A cubic periodic spline S]?: A on segment [0,27] segment is a spline

(k) (k)
function of order three such that <S§’:A> (0) = (SJ%A> (27),k = 0,1,2, where
A={0=zy<z1<..<m,=2r}and f(x) € C*0,2n] is 2r—periodic [4].

Note: The interpolating function S}, minimizes the value fo% (¢"(t))%dt among
all functions g € C* which coincide with function f(x) at the points z;,i = 0, n.

3. MAIN RESULTS

Theorem 3.1. If f(x) € C?|0,2x] is 27w-periodic then for some c intermediate to
Ti—1, T and T4

—4.5 —

U ”<26>) < (S%0)"(x;) < 4.5+

where A={0=xzy <z <..<x, =27}
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Proof. Let us take v, = maxj<;<,_1 |¢;|. Then using Example 1 we get

max | \;| > | Ak| > 2[vn| — pr|vr—1| — v|Yksa| >
1<i<n—1

> 2|k = prel o] — vilr] = |¥e|(2 = (e + vi)) =
= [¢](2 = 1) =[] = | Jnax |Ail.
Consequently

max

1<i<n—1 (S?A)//(xi)

Now from obtained result, the Arithmetic-Geometric inequality and the Mean-
Value theorem as applied to the second order difference assure that

< max |\
1<i<n—1

max ‘ <S§A>H(xi)

< max )Gf[l'i—hxivxi-i-l] =

1<i<n—1 ~ 1<i<n—1
_ 6f”2(6) s (J;”(C))2J. e
where ¢ intermediate to x;_1,z; and x;,1.
Consequently
‘(S?A>//(xi) < w,i =1,n—-1,

which yields to our result.
O

Theorem 3.2. If the Fourier series of periodic function f(x) € C*[—n, ] contains
only cosine terms, then the Fourier series of the interpolating spline S? A, Where

A={-7m=0_, <2 (1)< ..<T1 <20 <21 <...<Tp1 <Tp =7}

such that |x_;| = |z;|,7 = 1, n, also contains only cosine terms.

Proof. Let (S3,)* : [-m, 7] — R, (S},)* € C*[—n, ] be another function such
that S35 (—z) = (S}4)*(z) and f(z) = % + 3.2, ax cos kx where ay, k = 1,2, ..
are Fourier coefficients of function f(z) € C?|—m, 7].

Now we have

(S?A)*<Ii> = S?A(m—i) = flz_i) = f(—x) =

o0

+ Z ay cosk(—x;) =

k=1

= % —l—;akcoskxi = f(z;),i=1,n.
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Consequently (S},)* : [-m, 7] — R represents a spline for function f(z) and
from the uniqueness of the interpolating spline we get that(Sj? A= sz A Tespec-
tively S?\(z_;) = S{a(—1;) = S}a(w;),7 = 1,n, which implies that the Fourier
series of the spline contains only cosine terms. d

Theorem 3.3. If the Fourier series of periodic function f(z) € C*[—n,n] contains
only sine terms, then the Fourier series of the interpolating spline S},, where

A={-T=2_, <0 (1)< .. <21 <Tr <1 <. <Tp_1 < Tp =7}

such that |x_;| = |x;|,i = 1, n, also contains only sine terms.

Proof. Let (S3,)" : [—m,7] — R, (S%,)" € C?[—n,n] be another function such
that (S7,)*(z) = =S3A(—x) and f(z) = > axsin kx where a;, k = 1,2, .. are
Fourier coefficients of function f(z) € C?[—m, 7].

Now we have

_<S?A)*(xi) = S?A(‘T—i) = flz) = f(—x) = Zak sink(—m;) =
k=1
= —Zaksinka:i = —f(x;),1=1,n.
k=1
Consequently (S},)* : [-m, 7] — R represents a spline for function f(z) and
from the uniqueness of the interpolating spline we get that (53,)* = 57, re-
spectively 57, (z;_1) = S}A(—x;) = —S}a(2;),1 = 1,n, which implies that the
Fourier series of the spline contains only sine terms. O

Theorem 3.4. Let f(x) € C?|0,27] and the spline s € S%, be its interpolant, i.e.
s(x;)) = f(z),i = 1,n. If f and s satisfy the boundary conditions
§'(0) = f'(0), s'(2m) = f'(2m), s"(0) = f"(0) and s"(27) = f"(27), then

(I1f = sll2)> = (Il = lsll2) (UL fll2 + Nsll2)-

Proof We have that (||f — s[l2)* = (Ill: = Isl2)(IFll: + lIsll2) = 2(f = s.5) .
Since f(x) € C?0,2x] and s € C?[a, b] has continuous derivatives of order 2, by
successive integrations, using the boundary conditions and since s”'(z) = 0 we



5832 S. REXHEPI], E. ISENI, AND S. KERA

find that
<f — s,5>2 = - /027r (f(:c) - s(x))s’”(x)dx
= — i /; <f(a:) — 5(x)>s”/(x)dx
= — i (f(x) — s(w)) s"(z)dx zl =0.
Therefore

(IIf = sll2)® = (Il = lsll2) UL fll2 + Nsll2)-
O

Theorem 3.5. Let f(z) = 0 and the spline s € S} be its interpolant, i.e. s(x;) =
f(z),i = 1,n. If f and s satisfy the boundary conditions s'(0) = f'(0),
s'(2m) = f'(2m),s"(0) = f"(0) and s"(27) = f"(2m), then s = 0.

Proof. For f(x) = 0, from Theorem 3.4, we have:
(110 = sll2)* = 0 = (lIsll2)* = (Isll2)* = 0 = [|s]l> = 0.

Now from the boundary conditions since s (0) = s@(27) = 0,7 = 1,2 =
s =0. U
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