ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.8, 5881–5889 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.8.55 Special Issue on ICMA-2020

COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASSES OF BI-PSEDUO- MOCANU-CONVEX FUNCTIONS

K.VIJAYA¹ AND V.MALATHI²

ABSTRACT. In this paper, we introduce and investigate a new subclass Mocanu-Pseduo-bi-convex functions of the class Σ in the open unit disk, satisfy Ma and Minda subordination conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions in the new subclass introduced here. Several (known or new) consequences of the results are also pointed out.

1. INTRODUCTION

Let A denote the class of analytic functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

normalized by the conditions f(0) = 0 = f'(0) - 1 defined in the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. The Koebe one quarter theorem [4] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{A}$ contains a disk of radius $\frac{1}{4}$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z)) =$ $z, (z \in \mathbb{D})$ and $f(f^{-1}(\omega)) = \omega (|\omega| < r_0(f), r_0(f) \ge \frac{1}{4})$. A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{D} if both f and f^{-1} are univalent in \mathbb{D} . Let Σ denote the class of bi-univalent functions defined in the unit disk \mathbb{D} . Since $f \in \Sigma$ has the

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions, Univalent functions, Bi-univalent functions, Bi-starlike functions, Bi-convex functions, Bi-Pesudo starlike functions, Bi-Mocanu-convex functions, Subordination.

Maclaurian series given by (1.1), a computation shows that its inverse $g = f^{-1}$ has the expansion

(1.2)
$$g(\omega) = f^{-1}(\omega) = \omega - a_2\omega^2 + (2a_2^2 - a_3)\omega^3 + \cdots$$

An analytic function f is subordinate to an analytic function g, written $f(z) \prec g(z)$, provided there is an analytic function w defined on \mathbb{D} with w(0) = 0 and $|\omega(z)| < 1$ satisfying $f(z) = g(\omega(z))$.

The class $L_{\vartheta}(\mu)$ of ϑ -pseudo-starlike functions of order $\mu(0 \leq \mu < 1)$ were introduced and investigated by Babalola [2] whose geometric conditions satisfy $\Re\left(\frac{z(f'(z))^{\vartheta}}{f(z)}\right) > \mu$. He showed that all pseudo-starlike functions are Bazilevič of type $\left(1 - \frac{1}{\vartheta}\right)$ order $\beta^{\frac{1}{\vartheta}}$ and univalent in open unit disk \mathbb{D} . If $\vartheta = 1$, we have the class of starlike functions of order μ , which in this context, are 1-pseudo-starlike functions of order μ . Further, for $\vartheta = 2$ we note that functions in $L_2(\mu) \equiv G(\mu)$ are defined by $\Re\left(f'(z)\frac{zf'(z)}{f(z)}\right) > \mu, (z \in \mathbb{D})$

Recently there has been triggering interest to study bi-univalent functions (see [8, 10, 11]. Motivated by the works of Ali et al. [1] and Goyal and Goswami [5] and Srivastava et al [7] in this paper we introduce a new subclass $M_{\Sigma}^{\gamma}(\vartheta, \mu, h)$ of bi-univalent functions to estimate the coefficients $|a_2|$ and $|a_3|$ for the functions in the class $M_{\Sigma}^{\tau}(\vartheta, \mu, h)$.

Definition 1.1. Let $h : \mathbb{D} \to \mathbb{C}$ be a convex univalent function such that h(0) = 1and $\mathfrak{R}(h(z)) > 0, z \in \mathbb{D}$. A function f(z) is said to be in the class $M_{\Sigma}^{\gamma}(\vartheta, \mu, h)$ if the following conditions are satisfied:

(1.3)
$$e^{i\tau} \left[(1-\mu) \frac{z(f'(z))^{\vartheta}}{f(z)} + \mu \left(\frac{z[(f'(z))']^{\vartheta}}{f'(z)} \right) \right] \prec h(z) \cos \tau + i \sin \tau, \ (f \in \Sigma, \ z \in \mathbb{D})$$

and

(1.4)
$$e^{i\tau} \left[(1-\mu) \frac{\omega(g'(\omega))^{\vartheta}}{g(\omega)} + \mu \left(\frac{\omega[(g'(\omega))']^{\vartheta}}{g'(\omega)} \right) \right] \prec h(\omega) \cos \tau + i \sin \tau, \ (\omega \in \mathbb{D})$$

where $\tau \in (-\frac{\pi}{2}, \frac{\pi}{2}), \vartheta \ge 0$ and $g = f^{-1}$.

Remark 1.1. If we set $h(z) = (1+Cz)/(1+Dz), -1 \le D < C \le 1$, then the class $M_{\Sigma}^{\tau}(\vartheta, \mu, h)$ reduces to $M_{\Sigma}^{\tau}(\vartheta, \mu, C, D)$ which is defined as (1.5) $e^{i\tau} \left[(1-\mu) \frac{z(f'(z))^{\vartheta}}{f(z)} + \mu \left(\frac{z[(f'(z))']^{\vartheta}}{f'(z)} \right) \right] \prec \frac{1+Cz}{1+Dz} \cos \tau + i \sin \tau, \ (f \in \Sigma, \ z \in \mathbb{D})$

and

(1.6)

$$e^{i\tau} \left[(1-\mu) \frac{\omega(g'(\omega))^{\vartheta}}{g(\omega)} + \mu \left(\frac{\omega[(g'(\omega))']^{\vartheta}}{g'(\omega)} \right) \right] \prec \frac{1+C\omega}{1+D\omega} \cos \tau + i \sin \tau, \ (\omega \in \mathbb{D})$$
where $\tau \in (-\frac{\pi}{2}, \frac{\pi}{2}), \mu \ge 0$ and $g = f^{-1}$.

W here $\tau \in (-\frac{\pi}{2}, \frac{\pi}{2}), \mu \geq 0$ and g =

In particular, by setting $h(z) = \frac{1+(1-2\beta)z}{1-z}, \ 0 \le \beta < 1$, the class $\mathcal{M}^{\tau}_{\Sigma}(\vartheta, \mu, h)$ reduces to $M_{\Sigma}^{\tau}(\vartheta, \mu, 1 - 2\beta, -1) \equiv M_{\Sigma}^{\tau}(\vartheta, \mu, \beta)$. Further, we note that $M_{\Sigma}^{\tau}(\vartheta, 0, \beta) \equiv$ $M_{\Sigma}^{\tau}(\vartheta,\beta)$. and $M_{\Sigma}^{\tau}(\vartheta,1,\beta) \equiv N_{\Sigma}^{\tau}(\vartheta,\beta)$.

Remark 1.2. Taking $\mu = 0$ in the class $M^{\tau}_{\Sigma}(\vartheta, \mu, C, D)$ we have $M^{\tau}_{\Sigma}(\vartheta, C, D)$ and if $f \in \mathcal{M}^{\tau}_{\Sigma}(\vartheta, C, D)$, then

(1.7)
$$e^{i\tau} \frac{z(f'(z))^{\vartheta}}{f(z)} \prec \frac{1+Cz}{1+Dz} \cos \tau + i \sin \tau, \ (f \in \Sigma, \ z \in \mathbb{D})$$

and

(1.8)
$$e^{i\tau} \frac{\omega(g'(\omega))^{\vartheta}}{g(\omega)} \prec \frac{1+C\omega}{1+D\omega} \cos \tau + i \sin \tau, \ (\omega \in \mathbb{D})$$

where $\tau \in (-\frac{\pi}{2}, \frac{\pi}{2})$ *and* $g = f^{-1}$.

We note that by taking $\vartheta = 1, \mu = 0$, and $\tau = 0$, we get the known class $M_{\Sigma}^{0}(1, 0, 1 - 2\beta, -1) \equiv S_{\Sigma}^{*}(\beta)$ [3].

Remark 1.3. Taking $\mu = 1$ in the class $M_{\Sigma}^{\tau}(\vartheta, \mu, C, D)$, we have $N_{\Sigma}^{\tau}(\vartheta, C, D)$ and if $f \in \mathcal{N}_{\Sigma}^{\tau}(\vartheta, C, D)$, then

(1.9)
$$e^{i\tau} \frac{z[(f'(z))']^{\vartheta}}{f'(z)} \prec \frac{1+Cz}{1+Dz} \cos \tau + i \sin \tau, \ (f \in \Sigma, \ z \in \mathbb{D})$$

and

(1.10)
$$e^{i\tau} \left(\frac{w[(g'(\omega))']^{\vartheta}}{g'(\omega)} \right) \prec \frac{1 + C\omega}{1 + D\omega} \cos \tau + i \sin \tau, \ (w \in \mathbb{D})$$

where $\tau \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $g = f^{-1}$.

We also note that $M^0_{\Sigma}(1, 1, 1 - 2\beta, -1) \equiv K_{\Sigma}(\beta)$ [3].

The object of the paper is to estimate the coefficients $|a_2|$ and $|a_3|$ for the functions in the class $M^{\tau}_{\Sigma}(\vartheta, \mu, h)$. Further we define a new generalized subclass of $M_{\Sigma}^{\tau}(\vartheta, \mu, h)$ involving Hohlov operator and obtained the Maclaurians coefficients for *f* in this new generalized class.

2. Coefficients estimates for the function class $\mathrm{M}^{ au}_{\Sigma}(artheta,\mu,h)$

In order to prove our main result for the functions class $M^{\tau}_{\Sigma}(\vartheta, \mu, h)$, we recall the following lemma.

Lemma 2.1. Let the function $\Phi(z)$ given by $\Phi(z) = \sum_{n=1}^{\infty} B_k z^k$ be convex in \mathbb{D} . Suppose also that the function h(z) given by $h(z) = \sum_{k=1}^{\infty} h_k z^k$, is holomorphic in \mathbb{D} . If $h(z) \prec \Phi(z)(z \in \mathbb{D})$, then $|h_k| \le |B_1|(k \in \mathbb{N})$.

Theorem 2.1. Let f given by (1.1) be in the class $M_{\Sigma}^{\tau}(\vartheta, \mu, h)$. Then

(2.1)
$$|a_2| \le \sqrt{\frac{|B_1|\cos\tau}{\vartheta(2\vartheta-1) + 2\mu(6\vartheta^2 + 6\vartheta - 1)}}$$

and

(2.2)
$$|a_3| \le \left(\frac{1}{(1+2\mu)(3\vartheta-1)} + \frac{|B_1|\cos\tau}{(2\vartheta-1)^2(1+\mu)^2}\right) |B_1|\cos\tau$$

where $\tau \in (-\frac{\pi}{2}, \frac{\pi}{2})$ and $\mu \ge 0$.

Proof. Let $f \in \mathcal{M}_{\Sigma}^{\tau}(\vartheta, \mu, h)$ and $g = f^{-1}$. Then from (1.3) and (1.4) we have (2.3) $e^{i\tau} \left[(1-\mu) \frac{z(f'(z))^{\vartheta}}{f(z)} + \mu \left(\frac{z[(f'(z))']^{\vartheta}}{f'(z)} \right) \right] \prec p(z) \cos \tau + i \sin \tau, \ (z \in \mathbb{D})$

and

(2.4)
$$e^{i\tau} \left[(1-\mu) \frac{w(g'(\omega))^{\vartheta}}{g(\omega)} + \mu \left(\frac{w[(g'(\omega))']^{\vartheta}}{g'(\omega)} \right) \right] \prec q(w) \cos \tau + i \sin \tau, \ (w \in \mathbb{D})$$

where $p(z) \prec h(z)$ and $q(w) \prec h(\omega)$ and have the following forms:

(2.5)
$$p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots, z \in \mathbb{D}$$

and

(2.6)
$$q(\omega) = 1 + q_1\omega + q_2\omega^2 + q_3\omega^3 + \cdots, \ \omega \in \mathbb{D}.$$

On other hand we have

$$e^{i\tau} \left[(1-\mu) \frac{z(f'(z))^{\vartheta}}{f(z)} + \mu \left(\frac{z[(f'(z))']^{\vartheta}}{f'(z)} \right) \right] = e^{i\tau} \{ 1 + (1+\mu)(2\vartheta - 1)a_2 z \}$$
(2.7) $+ [(2\vartheta^2 - 4\vartheta + 1)(1 + 3\mu)a_2^2 + (1 + 2\mu)(3\vartheta - 1)a_3]z^2 + \cdots \} \prec p(z) \cos \tau + i \sin \tau$

and

$$e^{i\tau} \left[(1-\mu) \frac{w(g'(\omega))^{\vartheta}}{g(\omega)} + \mu \left(\frac{\omega[(g'(\omega))']^{\vartheta}}{g'(\omega)} \right) \right] = e^{i\tau} \{ 1 - (1+\mu)(2\vartheta - 1)a_2\omega + \left[[(2\vartheta^2 + 2\vartheta - 1) + (2\vartheta^2 - 1)a_2\omega + ($$

Now, equating the coefficients of z and z^2 in (2.7) and (2.8) we get

(2.9)
$$e^{i\tau}(1+\mu)(2\vartheta-1)a_2 = p_1\cos\tau,$$

(2.10)
$$e^{i\tau}[2\vartheta^2 - 4\vartheta + 1)(1 + 3\mu)a_2^2 + (1 + 2\mu)(3\vartheta - 1)a_3] = p_2 \cos \tau,$$

(2.11)
$$-e^{i\tau}(1+\mu)(2\vartheta-1)a_2 = q_1\cos\tau$$

and

(2.12)
$$e^{i\tau} \{ [(2\vartheta^2 + 2\vartheta - 1) + \mu(6\vartheta - 1)]a_2^2 - (1 + 2\mu)(3\vartheta - 1)a_3 \} = q_2 \cos \tau.$$

From (2.9) and (2.11) it follows that

(2.13)
$$p_1 = -q_1$$

and

(2.14)
$$2e^{2i\tau}(1+\mu)^2(2\vartheta-1)^2a_2^2 = (p_1^2+q_1^2)\cos^2\tau.$$

That is

$$a_2^2 = \frac{(p_1^2 + q_1^2)\cos^2 \tau}{2(1+\mu)^2(2\vartheta - 1)^2}e^{-2i\tau}$$

Adding (2.10) and (2.12) it follows that

(2.15)
$$a_2^2 = \frac{(p_2 + q_2)}{2\{\vartheta(2\vartheta - 1) + 2\mu(6\vartheta^2 + 6\vartheta - 1)\}} e^{-i\tau} \cos \tau$$

Since $p(z), q(z) \in h(\mathbb{D})$, applying Lemma 2.1 for the coefficients p_2 and q_2 , we get

(2.16)
$$|a_2|^2 = \frac{|B_1|\cos\tau}{\vartheta(2\vartheta-1) + 2\mu(6\vartheta^2 + 6\vartheta - 1)}$$

which gives the estimate on $|a_2|$ as asserted in (2.1). Subtracting (2.12) from (2.10) we get

(2.17)
$$2(1+2\mu)(3\vartheta-1)a_3 - 2(1+2\mu)(1-3\vartheta)a_2^2 = (p_2-q_2)e^{-i\tau}\cos\tau$$

Substituting the value of a_2^2 from (2.14) in (2.17) we get

$$a_3 = \frac{(p_2 - q_2)e^{-i\tau}\cos\tau}{2(1+2\mu)(3\vartheta - 1)} + \frac{(p_1^2 + q_1^2)e^{-2i\tau}\cos^2\tau}{2(2\vartheta - 1)^2(1+\mu)^2}.$$

K.VIJAYA AND V.MALATHI

Applying Lemma 2.1 once again for the coefficients p_1, p_2, q_1 and q_2 , we get

$$|a_3| \le \frac{|B_1|\cos\tau}{(1+2\mu)(3\vartheta-1)} + \frac{|B_1|^2\cos^2\tau}{(2\vartheta-1)^2(1+\mu)^2}$$

which gives the estimate on $|a_3|$ as asserted in (2.2).

By taking $\mu = 0$ we state the following:

Corollary 2.1. Let f given by (1.1) be in the class $M_{\Sigma}^{\tau}(\vartheta, h)$. Then

(2.18)
$$|a_2| \le \sqrt{\frac{|B_1|\cos\tau}{\vartheta(2\vartheta-1)}}$$

and

(2.19)
$$|a_3| \le \left(\frac{1}{3\vartheta - 1} + \frac{|B_1|\cos\tau}{(2\vartheta - 1)^2}\right) |B_1|\cos\tau$$

where $\tau \in (-\frac{\pi}{2}, \frac{\pi}{2})$ and $\mu \ge 0$.

By taking $\mu = 1$ we state the following:

Corollary 2.2. Let f given by (1.1) be in the class $N^{\tau}_{\Sigma}(\vartheta, h)$. Then

(2.20)
$$|a_2| \le \sqrt{\frac{|B_1|\cos\tau}{\vartheta(2\vartheta-1) + 2(6\vartheta^2 + 6\vartheta - 1)}}$$

and

(2.21)
$$|a_3| \le \left(\frac{1}{3(3\vartheta - 1)} + \frac{|B_1|\cos\tau}{4(2\vartheta - 1)^2}\right) |B_1|\cos\tau$$

where $\tau \in (-\frac{\pi}{2}, \frac{\pi}{2})$ and $\mu \ge 0$.

By setting $h(z) = \frac{1+Cz}{1+Dz}, -1 \le D < C \le 1$ in Theorem 2.1, we get the following corollary:

Corollary 2.3. Let f given by (1.1) be in the class $M^{\tau}_{\Sigma}(\vartheta, \mu, C, D)$. Then

(2.22)
$$|a_2| \le \sqrt{\frac{(C-D)\cos\tau}{\vartheta(2\vartheta-1) + 2\mu(6\vartheta^2 + 6\vartheta - 1)}}$$

and

(2.23)
$$|a_3| \le \left(\frac{1}{(1+2\mu)(3\vartheta-1)} + \frac{(C-D)\cos\tau}{(2\vartheta-1)^2(1+\mu)^2}\right)(C-D)\cos\tau,$$

where $\tau \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\mu \geq 0$.

5886

If we take $\mu = 0$ in corollary 2.3 we obtain

Corollary 2.4. Let f given by (1.1) be in the class $M^{\tau}_{\Sigma}(\vartheta, C, D)$. Then

$$|a_2| \le \sqrt{\frac{(C-D)\cos\tau}{\vartheta(2\vartheta-1)}}$$

and

$$|a_3| \le \left(\frac{1}{3\vartheta - 1} + \frac{(C - D)\cos\tau}{(2\vartheta - 1)^2}\right)(C - D)\cos\tau,$$

where $\tau \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

If we take $\mu = 1$ in corollary 2.3 we obtain

Corollary 2.5. Let f given by (1.1) be in the class $N^{\tau}_{\Sigma}(\vartheta, C, D)$. Then

$$|a_2| \le \sqrt{\frac{(C-D)\cos\tau}{\vartheta(2\vartheta-1) + 2(6\vartheta^2 + 6\vartheta - 1)}}$$

and

$$|a_3| \le \left(\frac{1}{3(3\vartheta - 1)} + \frac{(C - D)\cos\tau}{4(2\vartheta - 1)^2}\right)(C - D)\cos\tau,$$

where $\tau \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

Further, by setting $h(z) = \frac{1+(1-2\beta)z}{1-z}$, $0 \le \beta < 1$ in Theorem 2.1 we get the following corollary:

Corollary 2.6. Let f be given by (1.1) be in the class $M^{\tau}_{\Sigma}(\vartheta, \mu, \beta)$. Then

$$|a_2| \le \sqrt{\frac{2(1-\beta)\cos\tau}{\vartheta(2\vartheta-1) + 2\mu(6\vartheta^2 + 6\vartheta - 1)}}$$

and

$$|a_3| \le \left(\frac{1}{(1+2\mu)(3\vartheta-1)} + \frac{4(1-\beta)\cos\tau}{(2\vartheta-1)^2(1+\mu)^2}\right)(1-\beta)\cos\tau,$$

where $\tau \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\mu \geq 0$.

If we take $\mu = 0$ in corollary 2.6 we obtain

Corollary 2.7. Let f given by (1.1) be in the class $M_{\Sigma}^{\tau}(\vartheta, \beta)$. Then

$$|a_2| \le \sqrt{\frac{2(1-\beta)\cos\tau}{\vartheta(2\vartheta-1)}}$$

K.VIJAYA AND V.MALATHI

and

$$a_3| \le \left(\frac{1}{3\vartheta - 1} + \frac{4(1 - \beta)\cos\tau}{(2\vartheta - 1)^2}\right)(1 - \beta)\cos\tau,$$

where $\tau \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

If we take $\mu = 1$ in corollary 2.6 we obtain

Corollary 2.8. Let f given by (1.1) be in the class $N_{\Sigma}^{\tau}(\vartheta, \beta)$. Then

$$|a_2| \le \sqrt{\frac{(1-\beta)\cos\tau}{\vartheta(2\vartheta-1) + 2(6\vartheta^2 + 6\vartheta - 1)}}$$

and

$$|a_3| \le \left(\frac{1}{3(3\vartheta - 1)} + \frac{(1 - \beta)\cos\tau}{4(2\vartheta - 1)^2}\right)(1 - \beta)\cos\tau$$

where $\tau \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Remark 2.1. On taking $\tau = 0$, and $\vartheta = 1$ we observe that the classes $M_{\Sigma}^{\tau}(\vartheta, \mu, h)$, $M_{\Sigma}^{\tau}(0, h)$ and $M_{\Sigma}^{\tau}(1, h)$ becomes the familiar classes $M_{\Sigma}^{0}(\mu, h) \equiv M_{\Sigma}(\mu, h)$, $M_{\Sigma}^{0}(0, h) \equiv S_{\Sigma}^{*}(h)$ and $M_{\Sigma}^{0}(1, h) \equiv K_{\Sigma}(h)$ respectively.

Acknowledgement We, the authors, record our sincere thanks to the Convenors and authorities of ICMA 2020, Sacred Heart College, Tiruppatur, TN, India.

REFERENCES

- R.M. ALI, S.K. LEE, V. RAVICHANDRAN: Supramaniam, Coefficient estimates for biunivalent Ma-Minda star-like and convex functions, Appl. Math. Lett., 25 (2012), 344 -351.
- [2] K. O. BABALOLA: On λ pseudo starlike Functions , Journal of Classical Analysis, **3**(2) (2013), 137–147.
- [3] D.A. BRANNAN, T.S. TAHA: On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2) (1986), 70–77.
- [4] P.L. DUREN: Univalent Functions, in: Grundlehren der Mathematischen Wissenchaften, 259, Springer, New York 1983.
- [5] G.S.P. GOYAL, P. GOSWAMI: Estimate for initial Maclaurian coefficients of bi-univalent functions for a class defined by fractional derivative, Journal of Egyptian Mathematical Society, 20 (2012), 179–182.
- [6] W.C. MA, D. MINDA: SA unified treatment of some special classes of functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157 - 169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.

- [7] H.M. SRIVASTAVA, G. MURUGUSUNDARAMOORTHY, K.VIJAYA: Coefficient estimates for some families of Bi-Bazilevic Functions of the Ma-Minda type involving the Hohlov operator, Journal of Classical Analysis, 2(2) (2013), 167–181.
- [8] H.M. SRIVASTAVA, A.K. MISHRA, P. GOCHHAYAT: Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10) (2010), 1188–1192.
- [9] XIAO-FEI LI, AN-PING WANG: *Two new subclasses of bi-univalent functions*, International Mathematical Forum, **7**(30) 2012), 1495–1504.
- [10] HQ.-H. XU, Y.-C. GUI, H. M. SRIVASTAVA: Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994.
- [11] Q.-H. XU, H.-G. XIAO, H. M. SRIVASTAVA: A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, J. Math. Anal. Appl., 172 (1993), 574–581.

SCHOOL OF ADVANCED SCIENCES, VELLORE INSTITUTE OF TECHNOLOGY(DEEMED TO BE UNIVERSITY) VELLORE - 632014, TAMILNADU, INDIA. *Email address*: kvijaya@vit.ac.in