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THE CYLINDRICAL CROSSING NUMBER OF ZERO DIVISOR GRAPHS

MARIA SAGAYA NATHAN1 AND J. RAVI SANKAR2

ABSTRACT. The concept of zero divisor was started in 1988 by Beck. He intro-
duced this idea to coloring a commutative ring by using simple graphs and also
included zero to the set vertices of zero divisors.Few years later, that is in 1999
Anderson and Livingston applied slight modification to Beck’s definition by re-
stricting the vertices set only to the nonzero zero divisors of the ring. In this
paper we discuss about the cylinderical crossing number of zero divisor graphs
for some graphs.

1. BASIC DEFINITIONS

Definition 1.1. A simple graph in which each pair of distinct vertices is joined by
an edge is called a complete graph. A complete graph on n vertices is denoted by
Kn.

Definition 1.2. A graph G is called bipartite if its vertex set V can be decomposed
into two disjoint subsets V1, V2 such that every edge in G joins a vertex in V1 with
a vertex in V2. A complete bipartite graph is a bipartite graph with bipartition
(V1, V2) such that every vertex of V1 is joined to all the vertices of V2. It is denoted
by Km,n, where |V1| = m and |V1| = n. A star graph is a complete bipartite K1,n.

Definition 1.3. A graph G is a k-partite graph is V(G) can be partitioned into
k subsets V1, V2, ...., Vk such that uv is an edge of G if u and v belong to different
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partite sets. If every two vertices in different partite sets are joined by an edge, then
G is a complete k-partite graph.

Definition 1.4. A graph is planar if it can be embedded in the plane in which no
two of its edges intersect. A null graph is a graph with no edges.

Definition 1.5. The crossing number cr(G) of a graph G is the minimum num-
ber of edge crossings among the drawings of G in the plane[24].

Definition 1.6. Let G be a graph drawn in the plane with the requirement that
the edges are line segments, no three vertices are col-linear, and no three edges may
intersect in a point, unless the point is a vertex. Such a drawing is said to be a
rectilinear drawing of G. The rectilinear crossing number of G, denoted cr(G), is
the fewest number of edge crossings attainable over all rectilinear drawings of G.
Any such a drawing is called optimal.

Definition 1.7. In a k-page (book) drawing of G = (V,E) all vertices V must
be drawn on astraight line (the spine of a book), and each edge in one of k half-
planes incident to this line (the book pages). The k-page crossing number vk(G)

corresponds to k-page drawings of G.

Definition 1.8. A nonempty set R is said to a ring, if in R there are defined two
operations, denoted by + and • respectively, such that for all a, b, c in R satisfies
abelian group under addition, a semi group under multiplication and the both +

and • must satisfies the distributive law.

Definition 1.9. A ring that has finite number of elements is called finite ring . A
ring with commutative property under multiplication is called commutative ring.
That is, if the multiplication of Zn is such that a.b = b.a for every a, b in Zn , then
we call Zn a commutative ring.

Definition 1.10. If a and b are two non-zero elements of a ring Zn such that a.b =

0, then ′a′ and ′b′ are the zero divisors of commutative ring Zn. In particular, ′a′

is a left zero divisor and ′b′ is a right zero divisor.

Definition 1.11. A commutative ring without zero divisor is called an integral
domain. A commutative ring with zero divisor is called non-integral domain. A
ring is said to be a division ring if it’s non-zero elements form a group under
multiplication.
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2. THE CYLINDERICAL CROSSING NUMBER OF ZERO DIVISOR GRAPH

Theorem 2.1. For any distinct prime p and q, the cc(Γ(Zpq)) is (p− 2)(q − 2)(q −
1)(p− 1)/4, where q > p.

Proof. The vertex set of Γ(Zpq) is {p, 2p, 3p, ..(p − 1)p, q, 2q, ..(p − 1)q}. That is
|V (Γ(Zpq))| = p + q − 2. Using the above theorem (crossing number), Γ(Zpq)

can be decomposed into Kp−1,q−1 for p < q. The construction is based on the
drawing of Γ(Zpq) on a cylinder, placing (q − 1) vertices evenly around the rim
on one lid and (p − 1) vertices on the other. All vertices on both lids are joined
pairwise by means of straight line from one lid to another.

Considering one vertex say p from the upper lid which is adjacent to all the
(p − 1) vertices on the other. Here, crossing is zero. Now considering another
vertex say 2p from the upper lid which is adjacent to all the (p − 1) vertices on
the other. Then, crossing is (p− 2). Considering the next vertex say 3p from the
upper lid which is adjacent to all the (p−1) vertices on the other. Then, crossing
is 2(p− 2). Proceeding in this manner there will be (q − 2) times of (p− 2). The
cylindrical crossing is summing up all the crossings between the two rim. That
is cy(Γ(Zpq)) is (p− 2)(q − 2)(q − 1)(p− 1)/4, where q > p. �

Theorem 2.2. For any prime p > 4, cc(Γ(Z4p)) is 3(p− 2)(p− 1)/2.

Proof. The vertex set of Γ(Z4p) = {2, 4, 6...2(2p − 1), p, 2p, 3p}. That is
|V (Γ(Z4p))| = 2p + 1. Let the vertex set be partitioned into three parts, namely
V1 = {p, 2p, 3p}, V2 = {4, 8, 16, ..., 4(p − 1)} and V3 = {2, 6, 14, ..2(2p − 1)}. It is
easy to see that any vertices of V1 is adjacent to all the vertices of V2 which forms
a complete bipartite graph K3,p−1 . Similarly, vertex 2p of V1 is adjacent to all
the vertices of V3 which forms a complete bipartite graph K1,p−1. Hence Γ(Z4p)

can be decomposed into K1,p−1 and K3,p−1.
The construction is based on the drawing of Γ(Z4p) on a cylinder by placing

V1 vertices evenly around the rim on one lid and V2 and V3 vertices on the
other. All vertices on both lids are joined pairwise by means of straight line from
one lid to another. By the above theorem, the crossing number for K3,p−1 is
3(p− 2)(p− 1)/2. Similarly, the crossing number for K1,(p−1) is zero since it is a
star graph. The cylindrical crossing is summing up all the crossings between the
two rim. That is cy(Γ(Z4p)) is 3(p− 2)(p− 1)/2. �
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Theorem 2.3. For any graph Γ(Z2p2),where p is any prime p > 3, then

cc(Γ(Z2p2)) = (p− 1)C4 + p(p− 1)2(p− 2)/4.

Proof. The vertex set of Γ(Z2p2), is {2, 4, 6, 8, ..., 2(p2 − 1), p, 2p, 3p, ..., p(2p− 1)}.
Hence, |V (Γ(Z2p2))| = p2 + p − 1. Let the vertex set be partitioned into three
parts, namely V1 = {p, 3p, 5p, .., p(2p − 1)}, V2 = {2p, 4p, ..., 2p(p − 1)} and V3 =

V (Γ(Z2p2)) − {V1 + V2}. It is easy to see that any vertices of V1 are adjacent to
all the vertices of V2 which forms a complete bipartite graph Kp,p−1. Similarly,
vertex p2 of V1 is adjacent to all the vertices of V3 which forms a complete bi-
patite graph K1,p(p−1). Moreover the vertices of V2 are adjacent among itself and
hence form a complete graph K2p(p−1). Hence Γ(Z2p2) can be decomposed into
K1,p(p−1), Kp,p−1 and K2p(p−1).

The construction is based on the drawing of Γ(Z2p2) on a cylinder by placing
V1 vertices evenly around the rim on one lid and V2 and V3 vertices on the
other. All vertices on both lids are joined pairwise by means of straight line
from one lid to another. By the above theorem, the crossing number for Kp,p−1

= (p)(p − 1)(p − 2)(p − 1)/4 = p(p − 1)2(p − 2)/4 and the crossing number for
K1,p(p−1) is zero since it is a star graph. Since, the vertices of V2 form a complete
graph K2p(p−1) the crossing number for K2p(p−1) is (p − 1)C4. The cylindrical
crossing is summing up all the crossings between the two rim and also on the
bottom of the rim. That is cy(Γ(Z2p2)) = (p− 1)C4 + p(p− 1)2(p− 2)/4. �

Theorem 2.4. For any graph Γ(Z3p2), where p is any prime p > 3, then

cc(Γ(Z3p2)) = (p + 1)C4 +
(p− 1)

2
{p2(3p− 10) + 6(2p− 1)}.

Proof. The vertex set of Γ(Z3p2), is {3, 6, 9, ......3(p2 − 1), p, 2p, 3p, .....p(3p − 1)}.
Hence, |V (Γ(Z2p2))| = p2 + 2p − 1.Let the vertices of Γ(Z3p2) be partitioned
into three parts. Namely, V1 = {p2, 2.P 2}, V2 = {1.3p, 2.3p, 3.3p, ..(p − 1).3p},
V3 = {3, 6, 9, .... ..3(p2 − 1)} and V4 = V (Γ(Z3p2)) − {V1 + V2 + V3}. It is easy to
see that any vertices of V1 are adjacent to all the vertices of V3 which forms a
complete bipartite graph K2,p(p−1). Similarly,any vertices of V2 are adjacent to all
the vertices of V4 which forms a complete bipartite graph Kp−1,2(p−1). Moreover
the vertices of V2 are adjacent among itself and hence form a complete graph
K(p−1). Also the vertices of V1 is adjacent to all the vertices of V2 but vertices of
V1 are non adjacent among itself. Therefore it forms a complete graph K(p+1)
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minus an edge. Hence Γ(Z3p2) can be decomposed into K2,p(p−1), Kp−1,2(p−1)and
K(p+1) minus an edge.

The construction is based on the drawing of Γ(Z3p2) on a cylinder by placing
V1 and V2 vertices evenly around the rim on one lid and V3 and V4 vertices on the
other. All vertices on both lids are joined pairwise by means of straight line from
one lid to another. By the above theorem, the crossing number for K2,p(p−1) is
(p−1)2(p−2)(2p−3)

2
. Similarly, the crossing number for Kp−1,2(p−1) is (p(p−1)−1)(p(p−1))

2
.

Since, the vertices of V1 and V2 form a complete graph Kp+1 minus an edge
cross on the lid with the crossing number (p + 1)C4. The cylindrical crossing
is summing up all the crossings between the two rim and also on the top of
the rim. That is cy(Γ(Z3p2)) = (p + 1)C4 + (p−1)2(p−2)(2p−3)

2
+ (p(p−1)−1)(p(p−1))

2
=

(p + 1)C4 + (p−1)
2
{p2(3p− 10) + 6(2p− 1)}. �

Theorem 2.5. The cylindrical crossing number of Γ(Z3n) where n ≥ 4, is 1
2
{140 +

9(3(n−3)−1)(9(3(n−3)−1)+1)
2

}.

Proof. The vertex set of Γ(Z3n) is {3, 6, 9...3(3n−1 − 1)}. Hence, |V (Γ(Z3n))| =

3n−1− 1. Let the vertices of Γ(Z3n) be partitioned into three parts. Namely, V1 =

{3n−1, 2.3n−1}, V2 = {1.3n−2, 2.3n−2, ..., 6.3n−2} and V3 = V (Γ(Z3n))−{V1+V2}. It
is easy to see that any vertices of V1 are adjacent to all the vertices of V2 moreover
the vertices of V2 are adjacent among itself and hence form a complete graph
K6. Also the vertices of V1 are adjacent among itself which together form a
complete graph K8. Similarly,any vertices of V1 are adjacent to all the vertices
of V3 which forms a complete bipartite graph K2,9(3(n−3)−1). Hence Γ(Z3n) can be
decomposed into K8and K2,9(3(n−3)−1)

The construction is based on the drawing of Γ(Z3n) on a cylinder by placing
V1 vertices evenly around the rim on one lid and V2 and V3 vertices on the other.
All vertices on both lids are joined pairwise by means of straight line from one
lid to another. By the above theorem, the crossing number for K2,9(3(n−3)−1) is
9(3(n−3)−1)(9(3(n−3)−1)+1)

2
and the complete graph cross on the lid with the crossing

number (8)C4 = 70. The cylindrical crossing is summing up all the crossings
between the two rim and also on the top of the rim. That is cy(Γ(Z3n)) =

70 + 9(3(n−3)−1)(9(3(n−3)−1)+1)
2

= 1
2
{140 + 9(3(n−3)−1)(9(3(n−3)−1)+1)

2
}. �

Theorem 2.6. The cylindrical crossing number of Γ(Z8p),where p is any prime
p > 3 is (p− 1)(20p− 3).
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Proof. The vertex set of Γ(Z8p) is {2, 4, 6, ..., 2(4p − 1), p, 2p, 3p, ..., 7p}. Where
|V (Γ(Z8p))| = 4p + 3. Let the vertices of Γ(Z8p) be partitioned into five parts.
Namely, V1 = {2p, 4p, 6p}, V2 = {p, 3p, 5p, 7p}, V3 is multiples of 8, V4 is multiples
of 4 other than multiples of 8 and V5 = V (Γ(Z8p)) − {V1 + V2 + V3 + V4}. It is
easy to see that any vertices of V2 along with V1 are adjacent to all the vertices
of V3 which forms a complete bipartite graph K7,p−1.Also, the vertex 4p of V1 are
adjacent to {2p, 6p}Similarly, any vertices of V1 are adjacent to all the vertices of
V4 which forms a complete bipartite graph K3,p−1. . Also the vertex 4p in V1 are
adjacent to all the vertices of V5 which forms a complete bipartite graph K1,2(p−1).
Hence Γ(Z8p) can be decomposed into K5,p−1, K3,p−1, K1,2 and K1,2(p−1).

The construction is based on the drawing of Γ(Z8p) on a cylinder by placing
V1, V2 vertices evenly around the rim on one lid and V3, V4 and V5 vertices on
the other. All vertices on both lids are joined pairwise by means of straight
line from one lid to another. By the above theorem, the crossing number for
K5,p−1 is 20(p−1)p

4
= 5(p− 1)p, the crossing number for K3,p−1 is 6(p−1)p

4
= 3(p−1)p

2
.

Moreover, the vertex {2p, 6p} of V1 which are adjacent to V3 cross the complete
bipartite graph K4,p−1 which is (p− 1)2. The cylindrical crossing is summing up
all the crossings between the two rim and also on the top of the rim. That is
cy(Γ(Z8p)) = 5(p− 1)p + 3(p−1)p

2
+ (p− 1)2 = (p−1)(14p−1)

2
. �

Theorem 2.7. For any prime p > 6, the cylindrical crossing number of Γ(Z6p) is
(p−1)(13p−1)

2
.

Proof. The V (Γ(Z6p)) = {2, 4, 6...2(3p − 1), 3, 6, . . . , 3(2p − 1), p, 2p, 3p, 4p, 5p}.
That is |V (Γ(Z6p))| = 4p + 1. Let the vertices of Γ(Z6p) be partitioned into five
parts. Namely, V1 = {2p, 3p, 4p}, V2 = {p, 5p}, V3 is multiples of 6, V4 is multiples
of 3 other than multiples of 6 and V5 = V (Γ(Z6p))−{V1 +V2 +V3 +V4}. It is easy
to see that any vertices of V2 along with V1 are adjacent to all the vertices of V3

which forms a complete bipartite graph K5,p−1. Also the vertex 3p is adjacent to
the vertices {2p, 4p} Similarly, the vertices {2p, 4p} of V1 are adjacent to all the
vertices of V4 which forms a complete bipartite graph K2,p−1. Also the vertex
3p in V1 are adjacent to all the vertices of V5 which forms a complete bipartite
graph K1,2(p−1). Hence Γ(Z8p) can be decomposed into K5(p−1, K2,p−1, K1,2 and
K1,2(p−1).

The construction is based on the drawing of Γ(Z6p) on a cylinder by placing
V1 and V2 vertices evenly around the rim on one lid and V3, V4 and V5 vertices
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on the other. All vertices on both lids are joined pairwise by means of straight
line from one lid to another. By the above theorem, the crossing number for
K5,p−1 is 20(p−1)p

4
= 5(p− 1)p, the crossing number for K2,p−1 is 6(p−1)p

4
= 3(p−1)

2
p.

Moreover, the vertex {2p, 6p} of V1 which are adjacent to V3 cross the complete
bipartite graph K2,p−1 which is (p− 1)2. The cylindrical crossing is summing up
all the crossings between the two rim and also on the top of the rim. That is
cy(Γ(Z6p)) = 5(p− 1)p + (p−1)p

2
+ (p− 1)2 = (p−1)(13p−1)

2
. �

Theorem 2.8. For any prime p > 2, cy(Γ(Z2p)) = 0.
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