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FEED FORWARD AND BACKWARD DIFFERENCE EQUATIONS FOR
CONTROLLING THE SIGNAL

L. FRANCIS RAJ1 AND D. DORATHY PREMA KAVITHA

ABSTRACT. In this paper we consider the nonlinear time-varying discrete-time
framework system, a notion of poles and zeros is developed in terms of factor-
izations of operator polynomials with time-varying coefficients. In the discrete-
time case, it is indicated that factorizations are figured by solving a nonlinear
recursive distinction condition with time-differing coefficients. The hypothesis
is applied to the investigation of the input /output conditions and the response
of the system and its stability are noted. Likewise we showed that, if a time-
varying analogues of the difference equation is invertible, then the zero-input
response itself decomposed and associated with the poles. Finally numerical
examples are shown for filters stability.

1. INTRODUCTION

Difference equations and its contrast conditions are the proper portrayal of
mathematical discrete process, which have exceptional significance in regions,
for example, Digital Signal Processing and frameworks, channel configuration,
denoise strategies (in both image and signal), etc [5, 16]. Higher order differ-
ence equations are less studied, and they have extra ordinary significance in
applications where the current state depends on the previous states [4,9].

The fundamental thought here is to consider frameworks with changes hap-
pening discretely [3, 6, 12]. We can’t generally watch such systems persistently,
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so we simply screen the difference equations periodically [7,10,11]. This is the
fundamental thought of time based analysis, which is measurable and sufficient
ways are there to deal with depicting, anticipating and controlling the series
over the period of time [1, 13, 15]. As an application of difference equations
in signal processing, the authors, G. Britto Antony Xavier etc., [4] have defined
Laplace transform with shift value ` using generalized difference operator.

The paper is structured as follows. In Section 2, we arrived the unique so-
lution and the solutions are converging through poles and zeros in a discrete
time interval of the higher order input/output difference equations. In Section
3, Cascade realization of the difference equation which involves the delay is
modeled and extends the stability analysis for the filters. Some examples are
illustrated to enrich the results. Section 4 concludes the paper.

2. CASCADED REALIZATION STRUCTURE OF THE DIFFERENCE EQUATIONS

Consider the following difference equation:

(2.1) y(k + 2) + a1(k)y(k + 1) + a0(k)y(k) = b

where y(k) represents the output at time k, for the input u(k) . a0(k) and a1(k)

are elements of A which are polynomial (feed forward based) and hold a dis-
crete values for framing the filters to reduce or enhance the noise level [2,8,14].
This holds the control of the signal. Now let zi, which denotes the ith step left
shift operator on A which can be defined like,

zif(k) = f∆(k + i), f∆ ∈ A.

For any a(k) ∈ A, let a(k)zi stands that any operator which satisfied the proper-
ties of A and can be defined by

a(k)zif∆(k) = a(k)f∆(k + i) .

Now (2.1) can be written as:

(2.2) (z2 + a1(k)z + a0(k))y(k) = b.

Consider the functions p1(k), p2(k) ∈ A such that

(2.3) (z2+a1(k)z+a0(k))y(k) = (z−p1(k))[(z−p2(k))y(k)]v(k) = (z−p0(k))y(k)

(2.4) v(k) = (z − p0(k))y(k)



FEED FORWARD AND BACKWARD DIFFERENCE EQUATIONS 5919

So that

(2.5) y(k + 1)− p2(k)y(k) = ν(k)

Inserting the expression (2.4) for v(k) into (2.3) and using (2.2), we have

(z − p1(k))ν(k) = b

or

(2.6) v(k + 1)− p1(k)v(k) = b

The cascaded realization structure of the system (2.5) and (2.6) are shown in
Figure 1.

FIGURE 1. Cascaded Realization Structure of the Systems

Initially we characterized the cascaded realization structure as decomposed in
terms of A, especially to reduce the noise level in the filter and its coefficients.
In the above Cascade realization structured system, the delay related blocks are
used to pass the previous output as it arrived.

Again suppose that there exist p1(k), p2(k) ∈ A such that (2.3) is satisfied.
Now define

(z − p1(k)) ◦ (z − p2(k))

and hence

(2.7) [(z − p0(k)) ◦ (z − p1(k))]y(k) = (z − p1(k))[(z − p2(k))y(k)]

We extend (2.7) and simplifying we get

(z − p0(k) ◦ (z − p1(k)) = z2 − (p1(k) + p2(k + 1))z + p1(k) + p2(k)

z ◦ p0(k) = p1(k + 1)z
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z2 − (p0(k) + p1(k + 1))z + p1(k)p2(k) = z2 + a1(k)z + a0(k)

Again simplifying the above equations we get (backward based difference equa-
tion)

p0(k) + p1(k + 1) = −a1(k)

p0(k)p1(k) = a0(k)− a1(k)

(2.8) p2(k + 1)p1(k) + a1(k)p0(k) + a0(k) = 0

Example 1. Consider the following coefficients of the input/output difference equa-

tion a0 = 0.5 for all k ∈ Z, a1(k) =


−1, k ≤ 0

−1 + (2.5k
200

), 0 < k < 200

1.5, k ≥ 200

For k < 0, z2 + a1(k)z + a0 (k) = z2 − z + 0.5 = (z − 0.5− j0.5)(z − 0.5 + j0.5)

as k →∞, z2 + a1(k)z + a0(k)→ z2 + 1.5z + 0.5 = (z + 1)(z + 0.5)

The poles with p2(0) = 0.5− j0.5 are shown in Figure 2.

FIGURE 2. Poles with p2(0) = 0.5− j0.5

Thus we conclude that frequencies ω where jω are near to zeros.

3. ZEROS AND POLES OF INPUT/OUTPUT DIFFERENCE EQUATIONS

Now consider the discrete-time system given by the second-order input/output
difference equation (2.1). Let ∆p(k) and ∆q(k) denote the zeros of the polyno-
mial

z2 + a1(k)z + a0(k)
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That is,

(z − p1(k))(z − p2(k)) = z2 + a1(k)z + a0(k)

where (z −∆p(k))(z −∆q) is the ordinary product of two polynomials. We can
write this product in the form

(z −∆p(k))(z −∆q(k)) = z2 − (∆p(k) + ∆q(k))z + ∆p(k).∆q(k)

(3.1) = (z −∆p(k) ◦ (z −∆q(k)) + [∆q(k)(k + 1)−∆q(k)]z

The delay of the systems are noted, i.e., |∆q(k + 1)−∆q(k)| is small for k > k0.

From (3.1), we have

z −∆p(k)(z −∆q(k)) ∼= (z −∆p(k) ◦ (z −∆q(k))

Now suppose that a0(k) → C0 and a1(k) → C1 as k → ∞. Let r1 and r1 denote
the zeros of z2 + c1z + c0. If ∆p(k),∆q(k) is a pole set on k > k0, it turns out
that ∆q(k) will converge to r1 or r2 in general. This convergence ensures the
control of the signal and its leads to the stability. In particular, if r1 and r2 are
complex numbers and ∆q(k) is a real number then by (2.8), ∆q(k) is real for
k > k0 and thus ∆q(k) cannot converge to r1 or r2. In a particular specified case,
suppose that a0(k) = C0 and a1(k) = C1 for all k ≥ k1. Now consider the pole
set ∆p(k),∆q(k) and let ∆(k) = ∆q(k)− r2, so that

(3.2) ∆(k + 1) = ∆q(k)(k + 1)− r2

By (2.8) we have

p2(k + 1) = −a1(k)− a0(k)

∆q(k)

and thus for k ≥ k1, we have

(3.3) ∆q(k)(k + 1) = −c1(k)− C0

∆q(k)

Substitute (3.3) into (3.2), we get

(k + 1) = −c1 −
C0

p2(k)
− r2

∆(k + 1) =
−(C1 + r2)∆q(k)− C0

∆q(k)

Now ∆q(k) = ∆(k) + r2, we have:
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(3.4) ∆(k + 1) =
−(r2 + C1r2 + C0)− (C1 + r2)∆(k)

∆(k) + r2

But since r1 and r2 are the zeros of z2 + c1z + c0, now we have

(3.5) r2
1 + c1r2 + c0 = 0 and − (c1 + c2) = r1

Using (3.5) in (3.4), we obtain

∆(k + 1) =
r1∆(k)

∆(k) + r2

, k ≥ k1

g(k) =
r1 −∆(k)

∆(k)

g(k + 1) =
r2

r1

[g(k) + 1]

If r1 6= r2 and k1 = 0, the result is

(3.6) ∆(k) =
(r1 − r2)∆(0)

∆(0) + [(r1 − r2)−∆(0)]( r2
r1

)k
, k ≥ 0

From (3.6), we see that if ∆(0) 6= (r1− r2) and |r2

r1

| > 1, then ∆(k) is converging

to zero as k → ∞, this leads that p2(k) converges to r2 as k → ∞. This shows
the forward and backward case of signal control and its stability. Now consider
the polynomial A[z] in terms of

ziozj = zi+j

zi ◦ ai(k) = ai(k + i)zi, ai(k) ∈ A
Now consider

ai(z, k) = zn +
n−1∑
i=0

ai(k)zi

and

b(z, k) =
n∑

i=0

bi(k)zi

ai(z, k)y(k) = b(z, k)uk

Obviously u(k) represents the input value and y(k) provides the output. We call
pn(k) ∈ A which is a right pole of the cascaded realization structure if there
exists e(k, z) ∈ A[z] such that,

(3.7) ai(z, k) = e(z, k)o(z − pn(k))
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Now we call qn(k) ∈ A is a right pole of the system if there exists b(k, z) ∈ A[z]

such that
b(z, k) = e(z, k)o(z − qn(k))

This implies that (3.7) holds arbitrarily. Then we have

e(z, k) = zn−1 +
n−2∑
i=0

ei(k)zi

Now consider the equation which is equivalent to (3.7):

(3.8) en−2 = p0(k + n− 1) + an−1 (k)

ei−1(k) = ei(k)p0(n+ i) + ai(k) , i = n− 2, n− 3, ..., 1

(3.9) 0 = e0(k)p0(k) + a0(k)

According to the initial values p0(k0 − n + 1), p0(k0 − n + 2) , . . . , pn(k0) and
from (3.8) to (3.9) we compute pn(k) and ei(k) for k > k0. Now combine (3.8)
to (3.9) and we get

en−3(k + 1) = pn(k + n− 1)pn(k + n− 2) + an−1(k)pn(k + n− 2) + an−2(k)

Simplifying the above equations, we get

en−4(k) = pn(k + n− p)pn(k + n− 2)pn(k + n− p)

+an−1(k)pn(k + n− 2)pn(k + n− p)

+an−p+1(k)pn(k + n− p) + an−p(k)

Proceeding like this we obtain

0 = p0(k + n− 1)p1(k + n− 2) pn(k)

(3.10) 0 =
n−1∑
i=1

ai(k)p0(k + i− 1)p1(k + i− 2)p2(k) + a0(k)

If pn(k) 6= 0 for k ≥ k0 − n+ p, then we can write (3.10) in the following form:

p0(k + n− 1) = −an−1(k)−
n−2∑
i=1

ai(k)

p0(k + n− 2)p1(k + n− 3)pn(k + i)

(3.11) − a0(k)

p0(k + n− 2)p1(k + n− 3)pn(k)
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Equation (3.11) is solved recurrently to find the pole value of pn(k). Let q(k)

is denoted as zero of the cascaded realization structured system defined in the
earlier case as:

b(z − k + p) = b(z, k + p)o(z − q(k + p)).

Define ϕq(k, k0) =


−1, k = 0

q(k − 1 + p)q(k − 2 + p) q(k0 + p), k > k0

0, k < k0

The function ϕq(k, k0) is called the method connected with the zero q(k). If q(k)

is constant, then q(k) = q for k > k0, then

ϕq(k, k0) = qk−k0

Initially we have that

b(z, k + p)u(k) = b(z, k + p)[(z − q(k + p))u(k + p)]

= b(z, k + p)[ϕq(k + 1, k0), q(k)ϕq(k + p, k0)]

By definition of ϕq(k + p, k0),

ϕq(k + 1, k0) = q(k + p)ϕq(k + p, k0), k ≥ k0

and hence we have

b(z, k + p)u(k + p) = 0 for k ≥ k0.

Restructuring the input/output difference equation, we get

(3.12) y(k + n+ p) = −
n−1∑
i=0

ai(k + p)y(k + p+ i), k ≥ k0

If y(k0+i) = 0 for i = 0, 1, 2, · · · , n−1, it follows from (3.12) that y(k) = 0 for all
k ≥ k0 as desired. Now it can be chosen that y(k0+i) = 0 for i = 0, 1, 2, · · · , n−1.

4. CONCLUSION

This paper demonstrates an advanced level approach to the higher order
(both feed forward and backward) difference equation’s convergence through
poles and zeros. In addition, stability principles are focused on the concepts of
difference equation in the field of signal control and its stability. Finally, few
examples are given to demonstrate the efficiency of the projected structure.
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