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CREEPING FLOW OF NON-NEWTONIAN FLUID PAST A FLUID SPHERE
WITH NON-ZERO SPIN BOUNDARY CONDITION

G. GOMATHY1, A. SABARMATHI, AND PANKAJ SHUKLA

ABSTRACT. The paper concerns the creeping flow of non-newtonian fluid past
a fluid sphere, assuming uniform stream far away from the body along its axis of
symmetry. For outside and inside the fluid sphere we consider
micropolar fluid. The stream function is determined by matching the solution
of micropolar field equation for the flow outside the fluid sphere with that of
the Stokes equation for the flow inside the fluid sphere. Two known boundary
conditions are considered. No spin and spin boundary condition. The drag
force experienced by the fluid sphere is determined. The variation of drag for
different values of the permeability parameter (η), the coupling number N
and the micropolar parameter (m) is studied. Some well-known result then
deduced as a limiting case from present analysis.

1. INTRODUCTION

Micropolar fluids are fluids with micro structure. Micropolar fluids are also
called as polar fluids. When micropolar fluids are suspended in a viscous medium
they exhibit rigid, randomly oriented or spherical particles with their own spin
and microrotation, where the deformation of a particle is ignored. Eringen [2]
models of microfluid deals with a class of fluids which shows certain
microscopic effects which raises from the local structure and micromotion of
the fluid elements [4]. Some of the physical example of micropolar fluids are
ferrofluids, blood flows, bubbly liquids, liquid crystals and so on, they all con-
taining intrinsic polarities.
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Eringen [2] introduced the theory of simple microfluids. According to this
theory simple microfluids is a fluent medium whose properties and behaviour
are affected by the local motion of the fluid elements. Micropolar fluids can
support body moments and stress moments and are also influenced by spin
inertia. Micropolar fluids has applicants in wider range including lubrication
problem, stokes flow about a sphere, stagnation flow, boundary layer flow over a
plate and Taylor-Benard instability. Micropolar theory also modeled the
problems on body fluids and biological flow.

Satya Deo and Pankaj Shukla [6] studied the microrotation on the
boundary of the fluid sphere which is assumed to be proportional to the
rotation rate of the velocity on the boundary. Further they have also
evaluated the drag force experienced by the fluid sphere and also studied its
variation with respect to the material parameter. The problem of an
incompressible micropolar fluid flow through a porous sphere is studied by K.
Ramalakshmi and Pankaj Shukla [4] and also they analysed the drag coefficient
dependence by numerically and graphically with different values of micropolar
parameter.

The paper concerns the creeping flow of non-newtonian fluid past a fluid
sphere, assuming uniform stream far away from the body along its axis of
symmetry. For outside and inside the fluid sphere we consider micropolar fluid.
The stream function is determined by matching the solution of micropolar field
equation for the flow outside the fluid sphere with that of the Stokes
equation for the flow inside the fluid sphere. Two known boundary
conditions are considered. No spin and spin boundary condition. The drag force
experienced by the fluid sphere is determined. The variation of drag for
different values of the permeability parameter (η), the coupling number N and
the micropolar parameter (m) is studied. Some well-known result then deduced
as a limiting case from present analysis.

2. MICROPOLAR FIELD EQUATION

For micropolar fluid, the field equation (Eringen [2]) is given by

(2.1)
∂ρ

∂t
+ divρv = 0
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(2.2) ρ
dv
dt

= ρf−∇p+ κ∇× ω − (µ+ κ)∇×∇× v + (λ+ 2µ+ κ)∇(divv)

(2.3) ρJ
dω

dt
= ρI− 2κω + κ∇× v− γ∇×∇× ω + (α + β + γ)∇(divω),

where ρ the density, v the velocity field, ω the micro-rotation field, J the gyration
paramter, f the body force per unit mass, I the micro-rotation driving force per
unit mass, p the hydrostatic pressure, µ the classical viscosity coefficient, κ,λ the
vortex viscosity coefficient and α,β,γ are the gyroviscosity coefficients which
satisfies the following inequalities,

3α + β + γ ≥ 0, 2µ+ κ ≥ 0, 3λ+ 2µ+ κ ≥ 0,

γ ≥ |β| , κ ≥ 0, γ ≥ 0.
(2.4)

For the stress tensor Tij and couple stress tensor mij, the constitutive equations
are given by

(2.5) Tij = (−p+ divν)δij + (2µ+ κ)dij + κεijm(ξm − ωm)

and

(2.6) mij = (αdivν)δij + βξi,j + γξj,i,

dij the rate of strain components, ωm the components of microrotation vector,
2εm the components of vorticity vector and δij the kronecker delta.

Assuming a uniform, axi-symmetric slow viscous flow of an unbounded
incompressible micropolar fluid past a Non-Newtonian fluid sphere. The
governing differential equation for creeping flow around and through the fluid
sphere written for two regions seperated by the interface. The flow of fluid
for both outside and inside region are considered to be Stokesian, that is it is
assumed that the inertial terms in the momentum equation and bilinear terms
in balance of first stress moments can be ignored. Also, for both region, let us
consider that the body force and body couple terms are not present. Hence, the
governing equations for outside and inside flow are given by

(2.7) divv(i) = 0

(2.8) −∇p(i) + κ∇× ω(i) − (µ+ κ)∇×∇× v(i) = 0

(2.9) −2κω(i) + κ∇× v(i) − γ∇×∇× ω(i) + (α + β + γ)∇(∇.ω(i)) = 0
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3. STREAM FUNCTION FORMULATION

Considering the velocity and microrotation in spherical polar coordinates (r,θ,φ)
as

(3.1) v(i) = v(i)r (r, θ))er + v
(i)
θ (r, θ))eθ

and

(3.2) ω(i) = ν
(i)
φ (r, θ))eφ.

The velocity components v
(i)
r and v

(i)
θ mentioned below should satisfy the

equation of continuity

(3.3) v(i)r = − 1

r2sinθ

∂ψ(i)

∂θ
; v

(i)
θ =

1

rsinθ

∂ψ(i)

∂r
, i = 1, 2.

Now eliminating pressure from (2.8) and using in (3.3), we get

(3.4) E4ψ(i) −NE2(rsinθν
(i)
φ ) = 0.

Now using (3.4) in (2.9), we find that

(3.5) ν
(i)
φ =

1

2rsinθ
[E2ψ(i) +

2−N
Nm2

E4ψ(i)].

As of (3.4) and (3.5) by removing ν
(i)
φ , we can find the stream function

formulation meant for both outside and inside flow

(3.6) E4(E2 −m2)ψ(i) = 0,

where

E2 =
∂2

∂r2
+

(1− ζ2)
r2

∂2

∂ζ2
, ζ = cosθ,m2 =

κ(2µ+ κ)

γ(µ+ κ)
a2 and

N =
κ

µ+ κ
being the coupling number (0 ≤ N ≤ 1).

(3.7)

By applying the seperation of variables, the general regular solution of (3.6) can
be expressed as

ψ(i)(r, ζ) =
∞∑
n=2

[Anr
n +Bnr

−n+1 + Cnr
−n+2 +Dnr

−n+3+

Enr
1
2Kn− 1

2
(mr) + Fnr

1
2 In− 1

2
(mr)]Gn(ζ),

(3.8)

Iv(mr) and Kv(mr) are the modified Bessel functions of first and second kind of
non-integer index v=n – 1

2
respectively and Gn(ζ) the Gegenbauer function of
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first kind as defined in Abramowitz and Stegun [1]. The solution for the region
outside the sphere contain only the terms of the order n = 2 in the general
solution (3.8), we get

(3.9) ψ(1)(r, ζ) = [r2 + A2r
−1 +B2r + C2

√
rK3/2(mr)]G2(ζ).

For the region inside the fluid sphere we have

(3.10) ψ(2)(r, ζ) = [A∗2r
2 + C∗2r

4 + F ∗2
√
rI3/2(mr)]G2(ζ).

The microrotation components are

(3.11) ν
(1)
φ (r, ζ) =

1

rsinθ
[−B2r

−1 +
m2(µ1 + κ)

κ
C2

√
rK3/2(mr)]G2(ζ)

and

(3.12) ν
(2)
φ (r, ζ) =

1

rsinθ
[5A∗2r +

m2(µ2 + κ)

κ
√
r

F ∗2 I3/2(mr)]G2(ζ).

4. BOUNDARY CONDITION

To determine the unknowns in equations (3.9) and (3.10), the following
boundary conditions are used,

(4.1) ψ(1) = ψ(2) on r = 1.

Let us consider the continuity of tangential velocity,

(4.2)
∂ψ(1)

∂r
=
∂ψ(2)

∂r
on r = 1.

Assuming the continuity of tangential stress,

(4.3) τ
(1)
rθ = τ

(2)
rθ on r = 1.

Considering the continuity of normal stresses,

(4.4) p(1) = p(2) on r = 1.

No-spin condition on the boundary, i.e,

(4.5) ν
(1)
φ = 0 on r = 1,

(4.6) ν
(2)
φ = 0 on r = 1.
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Applying these above boundary conditions (4.1) - (4.6), we get the following
equations respectively as

(4.7) A2 +B2 + C2K3/2(m)− A∗2 − C∗2 − F ∗2 I3/2(m) = −1

2A∗2 + 4C∗2 + F ∗2 [mI1/2(m)− I3/2(m)] + A2 −B2+

C2[mK1/2(m) +K3/2(m)] = 2
(4.8)

6η(A2 − C∗2) + C2η[m2K3/2(m) + 6K3/2(m) + 2mK1/2(m)]+

F ∗2 [−m2I3/2(m)− 6I3/2(m) + 2mI1/2(m)] = 0
(4.9)

(4.10) (2µ1 + κ)β = 10C∗2(µ2 + κ)

(4.11) −B2 +m2 (µ1 + κ)

κ
C2K3/2(m) = 0

(4.12) 5A∗2 +m2 (µ2 + κ)

κ
F ∗2 I3/2(m) = 0.

Solving these equations mathematically we get the following unknowns,

A2 = 2µ1(κ(2−m2(−2 + η)− 2m(−1 + η)− 2η +m3η)9m2(1 +m)µ2)+

κ(κ(6−m2(−2 + η)− 6m(−1 + η)− 6η +m3η)− 3m(m2(−4 + η)+

3m3(−2 + η) + 2(−1 + η) + 2m(−1 + η)µ2)/∆

(4.13)

(4.14) B2 = −3m2(1 +m)(κ(−2 + η)− 2µ− 1)(κ+ 2µ1 − µ2)

∆

(4.15) C2 = −
emm

3
2

√
2
π
κ(−1 + η)(κ+ 2µ1 − µ2)

∆/2

A∗2 = κ2(6(−1 + η) + 6m(−1 + η) +m2(−7 + 2η) +m2(−9 + 4η))+

κ(8(−1 + η) + 8m(−1 + η) +m2(−23 + 4η)+

m2(−27 + 8η))µ1 − 18m2(1 +m)µ2
1/∆

(4.16)

(4.17) C∗2 =
β(κ+ 2µ1

10(κ+ µ2)
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F ∗2 = κ2(6 +m3(9− 4η) +m2(7− 2η)− 6m(−1 + η)− 6η)+

κ(8 +m3(27− 8η) +m2(23− 4η)− 8m(−1 + η)− 8η)µ1+

18m2(1 +m)µ2
1/∆

(4.18)

where

∆ = 2(−6m2(1 +m)µ2
1 + µ1(κ(8(−1 + η)8m(−1 + η) +m2(−9 + 2η)+

m2(−11 + 4η))− 6m2(1 +m)µ2) + κ(κ(m3(−3 + η) + 2m2(−2 + η)+

6(−1 + η) + 6m(−1 + η)) + 3m2(−1 +m(−2 + η))µ2))

(4.19)

5. EVALUATION OF DRAG FORCE

The drag on the fluid sphere is given by Ramkissoon and Mazumdar [5], the
formula is

(5.1) D = 4π(2µe + k) lim
r→∞

r(ψ(i) − ψ∞)

ω̄
,

where ψ∞ the stream function corresponding to the fluid motion at infinity and
ω̄ the cylindrical radius coordinate.

The values of ψ∞ and ω̄ are given by

(5.2) ψ∞ =
1

2
Ur2sin2θ, ω̄ = rsinθ.

Thus for the present case, the drag force is given by

(5.3) D = 2π(2µe + k)UaA2.

6. SPECIAL CASES

Case I:
Drag on a fluid sphere embedded in a another fluid. If k → 0 i.e. m → 0, the
micropolar fluid turns out to be a Newtonian fluid. Hence the drag reduces to

(6.1) F = −6πµUa
(1 + 2

3
η)

1 + η
,

which agree with “the result reported earlier by Happel and Brenner [3] for the
drag force experienced by fluid sphere in a clear fluid”.
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Case II:
If η → 0 the fluid sphere acts like a solid sphere, thus the drag force turns to be

(6.2) F = −6πµUa,

which is “well-known Stokes result for flow past a rigid sphere in unbounded
medium”.
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