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SINGLE SERVER REPAIRABLE RETRIAL QUEUEING SYSTEM WITH
MODIFIED BERNOULLI VACATION, OPTIONAL RE-SERVICE

C. REVATHI1, L. FRANCIS RAJ, AND M.C. SARAVANARAJAN

ABSTRACT. This paper deals with the steady state behavior of single server re-
trial queue with modified Bernoulli vacations, where each type of service is
voluntary service subject to breakdowns and repairs. In the system if there are
no customers at the end of each service, while the next customer arrives, the
server waits with probability 1-a and probability a, the server takes vacation.
We construct the mathematical model and derive the stationary probability dis-
tribution number of customer in the system by using the supplementary variable
method. Some system performance measures and special cases are obtained.

1. INTRODUCTION

In the retrial theory, when the arriving customer finds the server is engaged
and there is no availability of waiting space then the entire group join in the
retrial group and it is defined an orbit, also repeats the service later on. It has
been applied in communication and computer networks. To know the detailed
study of the fundamental concepts of retrial queues, we refer the reader to read
the books which are Falin and Templeton (1997) and Artalejo and Gomez-Corral
(2008).

In the current study we have seen an interest in queueing system with mod-
ified Bernoulli vacation. In the retrial queueing system the server may not
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sure about the behavior of the customers in the system. For analysis of mod-
ified Bernoulli vacation, may refer to G. Choudhury and K.C. Madan (2005),
Madhu Jain and Praveen Kumar Agarwal (2010), Pavai Madheswari and Sug-
anthi (2016) and Pavai Madheswari, Krishnakumar, and Suganthi (2017).

2. MATHEMATICAL ASSUMPTIONS OF THE MODEL AND ERGODICITY
CONDITION

Customers arrive according to a Poisson stream with rate λ. The server’s
retrial time follows general distribution with the distribution function A(x) and
density function θ(x) and Laplace-Stieljie’s transform (LST) A∗(x).

The arriving customer undergoes normal service provided by a single server
on a first come first served basis. On completing normal service some of the
arriving customer may opt re-service of the same service taken with probability
r or leaves the system with probability r̄ = 1− r.

The server’s service time follows general distribution function with the dis-
tribution S1(t) for normal service and S2(t) for optional re-service and LST
S∗1(t)S∗2(t) We assume that the server takes modified Bernoulli vacation, The
vacation time of the server follows a general distribution function V (t) and LST
V ∗(x).

The server is subject to breakdown. The life times are assumed to occur ac-
cording to exogeneous Poisson stream with mean breakdown rates α1, α2 nor-
mal service and optional re-service. The server’s repair time follows a general
distribution functionGi(t) and LST G∗i (y), i = 1, 2 respectively.

In addition letA0(t), S0
1(t), S0

2(t), V 0(t), G0
1(t), G

0
2(t) be the elapsed retrial time,

normal service time, optional re-service time, vacation time, repair on normal
service time and repair on optional re-service time respectively. In the steady
state, we assume that A(0) = 0, A(∞) = 1, S1(0) = 0, S1(∞) = 1, S2(0) =

0, S2(∞) = 1, V (0) = 0, V (∞) = 1 are continuous at x = 0 and Gi(0) =

0, Gi(∞) = 1 are continuous at y = 0.
The state of system at time t can be described by the Markov process
{C(t), X(t), t ≥ 0} where C(t) denotes the server state 0, 1, 2, 3, 4, 5 according
to the server is idle, busy, re-service, repair on normal service, repair on optional
re-service, vacation respectively.
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The functions are θ(x)dx, µ1(x)dx, µ2(x)dx, v(x)dx, r1(y)dy, r2(y)dy the condi-
tional probability of completion of repeated attempts, normal service, re-service,
vacation, repair time x, i.e., θ(x)dx = dA(x)

1−A(x) , µ1(x)dx = dS1(x)
1−S1(x)

, µ2(x)dx =
dS2(x)
1−S2(x)

, v(x) = dv(x)
1−v(x) , ri(y)dy = dGi(y)

1−Gi(y)
, i = 1, 2.

We analyze the ergodicity of the embedded Markov chain at departure com-
pletion epochs. Let {tn/n ∈ N} be the sequence of epochs at which either a
service period completion time occurs or a vacation time ends or a repair period
ends. The sequence of random vectors Zn = {C(tn+), X(tn+)} form a Markov
chain, which is embedded Markov chain for the queueing system.

Theorem 2.1. The embedded Markov chain {zn/n ∈ N} is ergodic if and only if
ρ < 1 where ρ = (1−A∗(λ)) + (λ[E(S1)(1 +α1E(G1)) + r(E(s2)(1 +α1E(G2))) +

aE(V )]).

3. STEADY STATE DISTRIBUTION OF THE SERVER STATE

For the process {X(t), t ≥ 0}, the probabilities are defined as

P0(t) = P{C(t) = 0, X(t) = 0}
Pn(x, t)dx = P{C(t) = 0, X(t) = n, x ≤ A0(t) < x+ dx}, n ≥ 1

π(1,n)(x, t)dx = P{C(t) = 1, X(t) = n, x ≤ S0
1(t) < x+ dx} for t, x, n ≥ 0

π(2,n)(x, t)dx = P{C(t) = 2, X(t) = n, x ≤ S0
2(t) < x+ dx} for t, x, n ≥ 0

R(1,n)(x, y, t)dy =

P{C(t) = 3, X(t) = n, y ≤ G0
1(t) < y + dy/S0

1(t) = x} for t, (x, y), n ≥ 0

R(2,n)(x, y, t)dy

= P{C(t) = 4, X(t) = n, y ≤ G0
2(t) < y + dy/S0

2(t) = x} for t, (x, y), n ≥ 0

Vn(x, t)dx = P{C(t) = 5, X(t) = n, x ≤ V 0(t) < x+ dx}, n ≥ 0

We assume that the steady state condition is fulfilled. Hence we can set

P0 = limn→∞ P0(t) ≥ 0, Pn(x) = limn→∞ Pn(x, t) for t ≥ 0, x ≥ 0, n ≥ 1,

π(1,n)(x) = limn→∞ π(1,n)(x, t) for t ≥ 0, x ≥ 0, n ≥ 0,

π(2,n)(x) = limn→∞ π(2,n)(x, t) for t ≥ 0, x ≥ 0, n ≥ 0,

R(1,n)(x, y) = limn→∞R(1,n)(x, y, t) for t ≥ 0,

R(2,n)(x, y) = limn→∞R(2,n)(x, y, t) for t ≥ 0,

Vn(x) = limn→∞ Vn(x, t) for t ≥ 0

We obtain the following steady state balance equations
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λP0 = (1− a)
[
r̄
∫∞
0
π(1,0)(x)µ1(x)dx

(3.1) +

∫ ∞
0

π(2,0)(x)µ2(x)dx

]
+

∫ ∞
0

V0(x)v(x)dx

(3.2)
dPn(x)

dx
+ (λ+ θ(x))Pn(x) = 0;n ≥ 1

(3.3)
dπ1,0(x)

dx
+ [λ+ α1 + µ1(x)]π1,0(x) =

∫ ∞
0

r1(y)R1,0(x, y)dy, n = 0

(3.4)
dπ1,n(x)

dx
+[λ+α1+µ1(x)]π1,n(x) = λπ1,n−1(x)+

∞∫
0

r1(y)R1,n(x, y)dy, n ≥ 1

(3.5)
dπ2,0(x)

dx
+ [λ+ α2 + µ2(x)]π2,0(x) =

∫ ∞
0

r2(y)R2,0(x, y)dy, n = 0

(3.6)
dπ2,n(x)

dx
+[λ+α2+µ2(x)]π2,n(x) = λπ2,n−1(x)+

∞∫
0

r2(y)R2,n(x, y)dy, n ≥ 1

(3.7)
dR1,0(x, y)

dy
+ (λ+ r1(y))R1,0(x, y) = 0, n = 0

(3.8)
dR1,n(x, y)

dy
+ (λ+ r1(y))R1,n(x, y) = λR1,n−1(x, y), n ≥ 1

(3.9)
dR2,0(x, y)

dy
+ (λ+ r2(y))R2,0(x, y) = 0, n = 0

(3.10)
dR2,n(x, y)

dy
+ (λ+ r2(y))R2,n(x, y) = λR2,n−1(x, y), n ≥ 1

(3.11)
dV0(x)

dx
+ (λ+ v(x))V0(x) = 0, n = 0

(3.12)
dVn(x)

dx
+ (λ+ v(x))Vn(x) = λVn−1(x), n ≥ 1

The set of equations (3.1) to (3.12) are solved under the following boundary
conditions at x = 0, y = 0:
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Pn(0) = (1− a)[r̄
∫∞
0
π(1,n)(x)µ1(x)dx

(3.13) +

∫ ∞
0

π(2,n)(x)µ2(x)dx] +

∫ ∞
0

Vn(x)v(x)dx, n ≥ 1

(3.14) π1,n(0) =

∫ ∞
0

P1(x)θ(x)dx+ λP0

(3.15) π1,n(0) =

∫ ∞
0

Pn+1(x)θ(x)dx+ λ

∫ ∞
0

Pn(x)dx, n ≥ 1

(3.16) π2,n(0) = r

∫ ∞
0

π1,n(x)µ1(x)dx, n ≥ 1

(3.17) R1,n(x, 0) = α1π1,n(x), n ≥ 0

(3.18) R2,n(x, 0) = α2π2,n(x), n ≥ 0

(3.19) Vn(0) = r̄

∫ ∞
0

π1,0(x)µ1(x)dx+

∫ ∞
0

π2,0(x)µ2(x)dx, n = 0

(3.20) Vn(0) = ar̄

∫ ∞
0

π1,n(x)µ1(x)dx+ a

∫ ∞
0

π2,n(x)µ2(x)dx, n ≥ 1

The normalizing condition is given by:

P0 +
∞∑
n=1

∫ ∞
0

Pn(x)dx+
∞∑
n=0

[ ∫ ∞
0

π1,n(x)dx

+

∫ ∞
0

π2,n(x)dx+

∫ ∞
0

Vn(x)dx+

∫ ∞
0

∫ ∞
0

R1,n(x, y)dxdy

+

∫ ∞
0

∫ ∞
0

R2,n(x, y)dxdy

]
= 1

(3.21)

Multiplying the equations (3.2) to (3.20) by suitable powers of z and summing
over n, we get

(3.22)
dP (x, z)

dx
+ (λ+ θ(x))P (x, z) = 0

(3.23)
dπ1(x, z)

dx
+ [λ(1− z) + α1 + µ1]π1(x, z) =

∫ ∞
0

r1(y)R1(x, y, z)dy

(3.24)
dπ2(x, z)

dx
+ [λ(1− z) + α2 + µ2]π2(x, z) =

∫ ∞
0

r2(y)R2(x, y, z)dy
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(3.25)
dR1(x, y, z)

dy
+ (λ(1− z) + r1(y))R1(x, y, z) = 0

(3.26)
dR2(x, y, z)

dy
+ (λ(1− z) + r2(y))R2(x, y, z) = 0

(3.27)
dV (x, z)

dx
+ (λ(1− z) + v(x))V (x, z) = 0

P (0, z) = (1− a)

[
r̄
∫∞
0
π1(x, z)µ1(x)dx

(3.28) +

∫ ∞
0

π2(x, z)µ2(x)dx

]
+

∫ ∞
0

V (x, z)v(x)dx− λP0

(3.29) π1(0, z) =
1

z

∫ ∞
0

P (x, z)θ(x)dx+ λ

∫ ∞
0

P (x, z)dx+ λP0

(3.30) π2(0, z) = r

∫ ∞
0

π1(x, z)µ1(x)dx

(3.31) R1(x, 0, z) = α1π1(x, z), n ≥ 0

(3.32) R2(x, 0, z) = α2π2(x, z), n ≥ 0

(3.33) V (0, z) = ar̄

∫ ∞
0

π1(x, z)µ1(x)dx+ a

∫ ∞
0

π2(x, z)µ2(x)dx, n ≥ 0

Solving the above PDE (3.22) to (3.27), it follows that

(3.34) P (x, z) = P (0, z)[1− A(x)]e−λx

(3.35) π1(x, z) = π1(0, z)[1− S1(x)]e−A1(z)x

(3.36) π2(x, z) = π2(0, z)[1− S2(x)]e−A2(z)x

(3.37) R1(x, y, z) = R1(x, 0, z)[1−G1(y)]e−λ0(z)y

(3.38) R2(x, y, z) = R2(x, 0, z)[1−G2(y)]e−λ0(z)y

(3.39) V (x, z) = V (0, z)[1− V (x)]e−λ0(z)x
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where A1(z) = λ0(z) + α1[1−G∗1(λ0(z))], A2(z) = λ0(z) + α2[1−G∗2(λ0(z))] and
λ0(z) = λ(1− z).

Substituting the equations (3.28) to (3.33) in (3.34) to (3.39), we get

(3.40) P (x, z) =
Nr(z)

Dr(z)
(1− A(x))eλx

Nr(z) = λP0z

{[
arV ∗(λ0(z)) + (1− a)r)S∗1(A1(z))S∗2(A2(z))

+(ar̄V ∗(λ0(z)) + (1− a)r̄)S∗1(A1(z))
]
− 1

}
Dr(z) =

{
z −

[
{z + (1− z)A∗(λ)}(arV ∗(λ0(z))

+(1− a)r)S∗1(A1(z))S∗2(A2(z)) + (ar̄V ∗(λ0(z)) + (1− a)r̄)S∗1(A1(z))

]}

(3.41) π1(x, z) =
λP0[(z − 1)A∗(λ)](1− S1(x))e−A1(z)x)

Dr(z)

(3.42) π2(x, z) =
rλP0[(z − 1)A∗(λ)]S∗1(A1(z))(1− S2(x))e−A2(z)x)

Dr(z)

(3.43)

R1(x, y, z) =
λP0α1{(z − 1)A∗(λ)(1−G1(y))e−λ0(z)y(1− S1(x))e−A1(z)x}

Dr(z)

R2(x, y, z) =

(3.44)
λP0α2{(z − 1)A∗(λ)(1−G2(y))e−λ0(z)y(1− S2(x))e−A2(z)xS∗1(A1(z)}

Dr(z)

V (x, z)

=
λP0[((z − 1)A∗(λ))(ar̄S∗1(A1(z)) + aS∗1(A1(z))S∗2(A2(z))(1− V (x))e−λ0(z)x]

Dr(z)

(3.45)

Integrating the above equations with respect to x from 0 to∞, we get

(3.46) P (z) =
Nr(z)

Dr(z)
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Nr(z) = zP0(1− A∗(λ))

[
(arV ∗(λ0(z))

+(1− a)r)S∗1(A1(z))S∗2(A2(z)) + (ar̄V ∗(λ0(z)) + (1− a)r̄)S∗1(A1(z))

]
− 1

Dr(z) =

{
z − [{(z + (1− z)A∗(λ))}(arV ∗(λ0(z)))

+(1− a)r)S∗1(A1(z))S∗2(A2(z)) + (ar̄V ∗(λ0(z)) + (1− a)r̄))S∗1(A1(z))]

}

(3.47) π1(z) =

λP0

[
1−S∗

1 (A1(z))

A1(z)

]
[(z − 1)A∗(λ)]

Dr(z)

(3.48) π2(z) =

λP0

[
1−S∗

2 (A2(z))

A2(z)

]
S∗1(A1(z))[r(z − 1)A∗(λ)]

Dr(z)

(3.49) R1(z) =

P0

[
1−S∗

1 (A1(z))

A1(z)

]
[α1λ0(z)A∗(λ)]

Dr(z)

(3.50) R2(z) =

P0

[
1−S∗

2 (A2(z))

A2(z)

]
[G∗2(λ0(z)− 1)][S∗1(A1(z)][α2rλ0(z)A∗(λ)]

Dr(z)

(3.51)

V (z) =
P0[V

∗(λ0(z)− 1][λ0(z)A∗(λ)(ar̄S∗1(A1(z)) + arS∗1(A1(z))S∗2(A2(z))]

Dr(z)

From the above equations, the only unknown is P0 can be obtained by normal-
izing condition

P0 + P (1) + π1(1) + π2(1) +Q1(1) +Q2(1) +R1(1) +R2(1) + V (1) = 1

P0 =
A∗(λ)− λ[E(S1)[1 + α1E(G1)] + rE(S2)[1 + α2E(G2)] + aE(V )]

A∗(λ)
(3.52)
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We define the probability generating functions of the number of customer in the
system is

K(z) = P0 + P (z) + V (1) + z[π1(z) + π2(z) +Q1(z) +Q2(z) +R1(z) +R2(z)],

K(z) =
P0A

∗(λ)S∗1(A1(z))(z − 1)(r̄ + rS∗2(A2(z)))

z − (z + (1− z)A∗(λ))(S∗1(A1(z))(aV ∗(λ0(z)) + 1− a)(r̄ + rS∗2(A2(z))))
.

(3.53)

We define the probability generating functions of the number of customers in
the orbit is

H(z) = P0 + P (z) + V (z) + π1(z) + π2(z) +Q1(z) +Q2(z) +R1(z) +R2(z),

H(z) =
P0A

∗(λ){1− z}
z − (z + (1− z)A∗(λ))(S∗1(A1(z))(aV ∗(λ0(z)) + 1− a)(r̄ + rS∗2(A2(z)))

.

(3.54)

4. PERFORMANCE MEASURES

We derive the system performance measures of M/G/1 retrial queue with op-
tional re-service and repair which is subject to modified Bernoulli vacation under
a steady state. Differentiating (3.53) with respect to z and evaluating at z = 1,
the mean number of customer in the system as

LS = λ2
[
E(s21) + (1 + α1E(G1))

2 + rE(S2
2)(1 + α2E(G2))

2

+aE(V 2) + 2rE(S1)(1 + α1E(G1))E(S2)(1 + α2E(G2))

+2aE(S1)(1 + α1E(G1))E(V ) + 2arE(S2)(1 + α2E(G2))

]
+2λ{[E(s1)(1 + α1E(G1)) + rE(S2)(1 + α2E(G2)) + aE(V )]

·[λE(S1)(1 + α1E(G1)) + rE(S2)(1 + α2E(G2))] + A∗(λ)})
/

2A∗(λ)

−{rE(S2)(1 + α2E(G2)) + aE(V )} λ(E(S1)(1 + α1E(G1))

+rE(S2)(1 + α2E(G2)) + aE(V ))

Differentiating (3.54) with respect to z and evaluating at z = 1, the mean num-
ber of customer in the orbit as

Lq = (1− A∗(λ)){[E(S1)(1 + α1E(G1)) + rE(S2)(1 + α2E(G2))

+aE(V )]} − λ2
[
E(S2

1)(1 + α1E(G1))
2 + rE(S2

2)(1 + α2E(G2))
2

+aE(V 2) + 2rE(S1)(1 + α1E(G1))E(S2)(1 + α2E(G2))
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+2aE(S1)(1 + α1E(G1))E(V ) + 2arE(S2)(1 + α2E(G2))E(V )− 1

]
/

2

{
λ(E(S1)(1+α1E(G1))+rE(S2)(1+α2E(G2))+aE(V ))−A∗(λ)

}
Let U be the steady state probability that the server is busy on normal service
period and optional re-service period, I be the steady state probability that the
server is idle during the retrial time.

U = π1(z) + π2(z)

=
P0A

∗(λ)λ[E(S1)[1 + α1E(G1)] + rE(S2)[1 + α2E(G2)]]

A∗(λ)− λ[E(S1)[1 + α1E(G1)] + rE(S2)[1 + α2E(G2)] + aE(V )]

4.1. SPECIAL CASES. Case (i): Let us consider No breakdown, No optional
re-service and No retrial then this model takes the form

K(z) =
P0S

∗
1(λ(1− z))(z − 1)

(z − (S∗1(λ(1− z))(aV ∗(λ0(z)) + 1− a)))
,

where P0 = 1− λ[E(S1) + aE(V )].

Case (ii): No vacation, No breakdown, No retrial this model can be reduced to
the following form.

Let a = 1,α1 = α2 = 0, A∗(λ)→ 1

H(z) =
P0S

∗
1(λ(1− z))(z − 1)(r̄ + rS∗2(λ(1− z)))

(z − (S∗1(λ(1− z)))(r̄ + rS∗2(λ(1− z)))V ∗(λ0(z))
,

where P0 = 1− λ[E(S1) + rE(S2) + E(V )].

5. CONCLUSION

We have introduced a single server retrial queue with regular and extra ser-
vice. The retrial time, service time, repair time and vacation time each have
a general distribution. Further, some performance measures, such as the num-
ber of jobs in the system, orbit size, server utilization and probability that the
orbit is empty are obtained. The result of this work finds application in the
telephone systems, call centre, and in the area of computer processing systems.
The proposed model can be extended, the concepts of working vacation policies,
randomized policy, setup time, catastrophes in future.
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