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CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY
SĂLĂGEAN OPERATOR WITH THE (p, q)-LUCAS POLYNOMIALS

SONDEKOLA RUDRA SWAMY, PADUVALAPATTANA KEPEGOWDA MAMATHA1,
NANJUNDAN MAGESH, AND JAGADEESAN YAMINI

ABSTRACT. Making use of Sălăgean differential operator, in this paper, we in-
troduce two new subclasses of the function class Σ of bi-univalent functions
which are associated with the (p, q)-Lucas polynomials defined in the open unit
disc. Furthermore, we find estimates on the coefficients |a2| and |a3| for func-
tions in these new subclasses. Further, we obtain Fekete-Szegö inequalities for
defined class and its specials cases. Also consequences of the results are pointed
out.

1. INTRODUCTION AND DEFINITIONS

Let R = (−∞,∞) be the set of real numbers, C be the set of complex numbers
and N := {1, 2, 3, . . .} = N0\ {0} be the set of positive integers. Let alsoA denote
the class of functions of the form

(1.1) f(z) = z +
∞∑
n=2

anz
n,

which are analytic in the open unit disk ∆ = {z : z ∈ C and |z| < 1}. Further,
by S we shall denote the class of all functions in A which are univalent in ∆.
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It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ ∆)

and f(f−1(w)) = w(|w| < r0(f); r0(f) ≥ 1
4
), where g(w) = f−1(w) = w− a2w

2 +

(2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . . .

A function f ∈ A is said to be bi-univalent in ∆ if both a function f and it’s
inverse f−1 are univalent in ∆. Let Σ denote the class of bi-univalent functions
in ∆ given by (1.1).

In 2010, Srivastava et al. [20] revived the study of bi-univalent functions by
their pioneering work on the study of coefficient problems. Various subclasses
of the bi-univalent function class Σ were introduced and non-sharp estimates on
the first two coefficients |a2| and |a3| in the Taylor-Maclaurin series expansion
(1.1) were found in the recent investigations (see, for example, [1–9,13–17,19]
) and including the references therein. The afore-cited all these papers on the
subject were actually motivated by the work of Srivastava et al. [20]. However,
the problem to find the coefficient bounds on |an| (n = 3, 4, . . . ) for functions
f ∈ Σ is still an open problem.

For analytic functions f and g in ∆, f is said to be subordinate to g if there
exists an analytic function w such that w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)),
z ∈ ∆. This subordination will be denoted here by f ≺ g, z ∈ ∆, or, convention-
ally, by f(z) ≺ g(z), z ∈ ∆.

In particular, when g is univalent in ∆,

f ≺ g (z ∈ ∆) ⇔ f(0) = g(0) and f(∆) ⊂ g(∆).

Let p(x) and q(x) be polynomials with real coefficients. The (p, q)-polynomials
Lp,q,n(x), or briefly Ln(x) are given by the following recurrence relation (see
[11,12]):

Ln(x) = p(x)Ln−1(x) + q(x)Ln−2(x) (n ∈ N \ {1}),

with
L0(x) = 2, L1(x) = p(x),

L2(x) = p2(x) + 2q(x), L3(x) = p3(x) + 3p(x)q(x), . . .

The generating function of the Lucas polynomials Ln(x) is given by:

(1.2) GLn(x)(z) :=
∞∑
n=0

Ln(x)zn =
2− p(x)z

1− p(x)z − q(x)z2
.
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Note that for particular values of p and q, the (p, q)−polynomial Ln(x) leads to
various polynomials, among those, we list few cases here (see, for more details,
also [5]):

(i) For p(x) = x and q(x) = 1, we obtain the Lucas polynomials Ln(x).
(ii) For p(x) = 2x and q(x) = 1, we attain the Pell-Lucas polynomials Qn(x).

(iii) For p(x) = 1 and q(x) = 2x, we attain the Jacobsthal-Lucas polynomials
jn(x).

(iv) For p(x) = 3x and q(x) = −2, we attain the Fermat-Lucas polynomials
fn(x).

(v) For p(x) = 2x and q(x) = −1, we have the Chebyshev polynomials Tn(x)

of the first kind.

We want to remark explicitly that, in [5] Altınkaya and S. Yalçin, first in-
troduced a subclass of bi-univalent functions by using the (p, q)−Lucas poly-
nomials. This methodology builds a bridge between the Theory of Geometric
Functions and that of Special Functions, which are known as different areas.
Thus, we aim to introduce several new classes of bi-univalent functions defined
through the (p, q)−Lucas polynomials. Furthermore, we derive coefficient esti-
mates and Fekete-Szegö inequalities for functions defined in those classes.

Let Aφ denoted the class of functions of the form

(1.3) fφ(z) = z +
∞∑
n=2

2

1 + e−s
anz

n :=
∞∑
n=2

φ(s)anz
n,

where φ(s) =
2

1 + e−s
is the sigmoid activation function and s ≥ 0. Also,A1 := A

(see [10]).
We consider a differential operator Dk, k ∈ N0, (see [18]) for fφ belongs to
Aφ, defined by

D0fφ(z) = fφ(z); D1fφ(z) = Dfφ(z) = zf ′φ(z); Dkfφ(z) = D(Dk−1fφ(z)).

We note that

(1.4) Dkfφ(z) = z +
∞∑
n=2

2nk

1 + e−s
anz

n :=
∞∑
n=2

nkφ(s)anz
n.

Definition 1.1. A function f ∈ Σ of the form (1.1) belongs to the class GΣ(λ,

k, φ(s);x), λ ≥ 1 and φ(s) =
2

1 + e−s
, s ≥ 0, if the following conditions are
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satisfied:

(1.5)
z
[(
Dkfφ(z)

)′]λ
Dkfφ(z)

≺ GLn(x)(z)− 1, (z ∈ ∆)

and for gφ(w) = f−1
φ (w),

(1.6)
w
[(
Dkg′φ(w)

)′]λ
Dkgφ(w)

≺ GLn(x)(w)− 1, (w ∈ ∆).

The geometric properties of the function class GΣ(λ, k, φ(s);x) vary according
to the values assigned to the parameters involved. For example, a = 2; p(x) =

bx, q(x) = q with GΣ(1, 0, φ(0);x) ≡ S∗Σ(x). The class S∗Σ(x) was introduced
and studied by Srivastava et al. [19]. Also, GΣ(λ, 0, φ(0);x) := GΣ(λ ;x) was
introduced and studied by authors [1].

In this investigation, we find the estimates for the coefficients |a2| and |a3|
for functions in the subclass GΣ(λ, φ(s);x). Also, we obtain the Fekete-Szegö
inequality.

2. COEFFICIENT ESTIMATES AND FEKETE-SZEGÖ INEQUALITY

In the following theorem, we obtain coefficient estimates for function f in the
class GΣ(λ, φ(s);x).

Theorem 2.1. Let fφ(z) = z +
∞∑
n=2

φ(s)anz
n be in the class GΣ(λ, φ(s);x). Then

|a2| ≤
|p(x)|

√
|p(x)|

2kφ(s)
√
|Q|

, and |a3| ≤
|p(x)|

(3λ− 1)3kφ(s)
+

p2(x)

(2λ− 1)23kφ(s)
,

and for µ ∈ R,

∣∣a3 − µa2
2

∣∣ ≤


|p(x)|
(3λ− 1)3kφ(s)

;

∣∣∣∣1− µ 3k

22kφ(s)

∣∣∣∣ ≤ |Q|
p2(x)(3λ− 1)

|p(x)|3
∣∣∣∣1− µ 3k

22kφ(s)

∣∣∣∣
3kφ(s) |Q|

;

∣∣∣∣1− µ 3k

22kφ(s)

∣∣∣∣ ≥ |Q|
p2(x)(3λ− 1)

,

where

Q = (2λ− 1) (1− λ) p2(x)− 2q(x)(2λ− 1)2.



LUCAS POLYNOMIAL COEFFICIENT ESTIMATES FOR PSEUDO STARLIKE FUNCTIONS 6021

Proof. Let f ∈ GΣ(λ, φ(s);x) be given by Taylor-Maclaurin expansion (1.1).
Then, from the Definition 1.1, for some analytic functions Ψ and Φ such that

Ψ(0) = 0; Φ(0) = 0, |Ψ(z)| < 1 and |Φ(z)| < 1 (∀ z, w ∈ ∆),

we can write

(2.1)
z
[(
Dkfφ(z)

)′]λ
Dkfφ(z)

= GLn(x)(Ψ(z))− 1

and

(2.2)
w
[(
Dkgφ(w)

)′]λ
Dkgφ(w)

= GLn(x)(Φ(z))− 1.

Or, equivalently,

z
[(
Dkfφ(z)

)′]λ
Dkfφ(z)

= −1 + L0(x) + L1(x)u(z) + L2(x)[u(z)]2 + . . .(2.3)

and

w
[(
Dkgφ(w)

)′]λ
Dkgφ(w)

= −1 + L0(x) + L1(x)v(w) + L2(x)[v(w)]2 + . . . .(2.4)

From (2.3) and (2.4) and in view of (1.2), we obtain

z
[(
Dkfφ(z)′

)]λ
Dkfφ(z)

= 1 + L1(x)u1z + [L1(x)u2 + L2(x)u2
1]z2 + . . .(2.5)

and

w
[(
Dkgφ(w)

)′]λ
Dkgφ(w)

= 1 + L1(x)v1w + [L1(x)v2 + L2(x)v2
1]w2 + . . . .(2.6)

It is fairly well known that

|Ψ(z)| =
∣∣ψ1z + ψ2z

2 + . . .
∣∣ < 1 and |Φ(z)| =

∣∣φ1w + φ2w
2 + . . .

∣∣ < 1,

and |ψk| ≤ 1 and |φk| ≤ 1 (k ∈ N).

Thus upon comparing the corresponding coefficients in (2.5) and (2.6), we
have

(2.7) (2λ− 1)2kφ(s)a2 = L1(x)ψ1

(2.8) (3λ− 1)3kφ(s)a3 + (2λ2 − 4λ+ 1)22kφ2(s)a2
2 = L1(x)ψ2 + L2(x)ψ2

1
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(2.9) −(2λ− 1)2kφ(s)a2 = L1(x)φ1

and

(2.10) (2λ2 + 2λ− 1)22kφ2(s)a2
2 − (3λ− 1)3kφ(s)a3 = L1(x)φ2 + L2(x)φ2

1.

From (2.7) and (2.9), we can easily see that

(2.11) ψ1 = −φ1,

and

2(2λ− 1)222kφ2(s)a2
2 = [L1(x)]2(ψ2

1 + φ2
1)

a2
2 =

[L1(x)]2(ψ2
1 + φ2

1)

2(2λ− 1)222kφ2(s)
.(2.12)

If we add (2.8) to (2.10), we get

2λ (2λ− 1) 22kφ2(s)a2
2 = L1(x)(ψ2 + φ2) + L2(x)(ψ2

1 + φ2
1).(2.13)

By substituting (2.12) in (2.13), we obtain

a2
2 =

[L1(x)]3 (ψ2 + φ2)

[2λ (2λ− 1) [L1(x)]2 − 2L2(x)(2λ− 1)2]22kφ2(s)
,(2.14)

which yields

|a2| ≤
|p(x)|

√
|p(x)|

2kφ(s)
√
|(1− λ) (2λ− 1)p2(x)− 2q(x)(2λ− 1)2|

.(2.15)

By subtracting (2.10) from (2.8) and in view of (2.11) , we obtain

2(3λ− 1)3kφ(s)a3 − 2(3λ− 1)22kφ2(s)a2
2 = L1(x) (ψ2 − φ2) + L2(x)

(
ψ2

1 − φ2
1

)
a3 =

L1(x) (ψ2 − φ2)

2(3λ− 1)3kφ(s)
+

22kφ(s)a2
2

3k
.(2.16)

Then, in view of (2.12), (2.16) becomes

a3 =
L1(x) (ψ2 − φ2)

2(3λ− 1)3kφ(s)
+

[L1(x)]2(ψ2
1 + φ2

1)

2(2λ− 1)23kφ(s)
.

Applying (1.2), we deduce that

|a3| ≤
|p(x)|

(3λ− 1)3kφ(s)
+

p2(x)

(2λ− 1)23kφ(s)
.

From (2.16), for µ ∈ R, we write

a3 − µa2
2 =

L1(x) (ψ2 − φ2)

2(3λ− 1)3kφ(s)
+

(
22kφ(s)

3k
− µ

)
a2

2.(2.17)
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By substituting (2.14) in (2.17), we have

a3 − µa2
2 =

L1(x) (ψ2 − φ2)

2(3λ− 1)3kφ(s)

+

(
22kφ(s)

3k
− µ

)(
[L1(x)]3 (ψ2 + φ2)

[2λ (2λ− 1) [L1(x)]2 − 2L2(x)(2λ− 1)2]22kφ2(s)

)
= L1(x)

{(
Ω(µ, x) +

1

2(3λ− 1)3kφ(s)

)
ψ2

+

(
Ω(µ, x)− 1

2(3λ− 1)3kφ(s)

)
φ2

}
,(2.18)

where

Ω(µ, x) =

(
22kφ(s)

3k
− µ

)
[L1(x)]2

[2λ (2λ− 1) [L1(x)]2 − 2L2(x)(2λ− 1)2]22kφ2(s)
.

Hence, in view of (1.2), we conclude that

∣∣a3 − µa2
2

∣∣ ≤


|L1(x)|
(3λ− 1)3kφ(s)

; 0 ≤ |Ω(µ, x)| ≤ 1

2(3λ− 1)3kφ(s)

2 |L1(x)| |Ω(µ, x)| ; |Ω(µ, x)| ≥ 1

2(3λ− 1)3kφ(s)

which evidently completes the proof of Theorem 2.1. �

Corollary 2.1. Let fφ(z) = z +
∞∑
n=2

φ(s)anz
n be in the class S∗Σ(φ(s); x). Then

|a2| ≤
|p(x)|

√
|p(x)|

2kφ(s)
√

2 |q(x)|
, and |a3| ≤

|p(x)|
2φ(s)3k

+
p2(x)

3kφ(s)
,

and for µ ∈ R

∣∣a3 − µa2
2

∣∣ ≤


|p(x)|
2φ(s)3k

;

∣∣∣∣1− µ 3k

22kφ(s)

∣∣∣∣ ≤ |q(x)|
|p(x)|2

|p(x)|3
∣∣∣∣1− µ 3k

22kφ(s)

∣∣∣∣
2φ(s)3k |q(x)|

;

∣∣∣∣1− µ 3k

22kφ(s)

∣∣∣∣ ≥ |q(x)|
|p(x)|2

.
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[9] S. S. EKER, B. ŞEKER: On λ-pseudo bi-starlike and λ-pseudo bi-convex functions with
respect to symmetrical points, Tbilisi Math. J., 11(1) (2018), 49–57.

[10] O. A. FADIPE-JOSEPH, B.B. KADIR, S.E. AKINWUMI, E.O. ADENIRAN: Polynomial
bounds for a class of univalent function involving Sigmoid function, Khayyam J. Math. 4(1)
(2018), 88–101.

[11] A. F. HORADAM, J.M. MAHON: Pell and Pell - Lucas polynomials, Fibonacci Quart. 23(1)
(1985), 7–20.

[12] T. HORZUM, E. G. KOCER: On some properties of Horadam polynomials, Int. Math. Forum
25–28(4) (2009), 1243–1252.



LUCAS POLYNOMIAL COEFFICIENT ESTIMATES FOR PSEUDO STARLIKE FUNCTIONS 6025
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[19] H.M. SRIVASTAVA, Ş. ALTINKAYA, S. YALÇIN: Certain subclasses of bi-univalent func-
tions associated with the Horadam polynomials, Iran J. Sci. Technol. Trans. Sci., 43 (2018),
1873–1879.

[20] H. M. SRIVASTAVA, A. K. MISHRA, P. GOCHHAYAT: Certain subclasses of analytic and
bi-univalent functions, Appl. Math. Lett. 23(10) (2010), 1188–1192.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, R. V. COLLEGE OF ENGINEERING,
BANGALORE-560 059 KARNATAKA, INDIA.

Email address: mailtoswamy@rediffmail.com.

DEPARTMENT OF MATHEMATICS, R. V. COLLEGE OF ENGINEERING, BANGALORE-560 059 KAR-
NATAKA, INDIA.

Email address: mamatharaviv@gmail.com

POST-GRADUATE AND RESEARCH DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COL-
LEGE FOR MEN, KRISHNAGIRI 635001, TAMILNADU, INDIA.

Email address: nmagi_2000@yahoo.co.in

DEPARTMENT OF MATHEMATICS, GOVERNMENT FIRST GRADE COLLEGE VIJAYANAGAR,
BANGALORE-560104, KARNATAKA, INDIA.
Email address: yaminibalaji@gmail.com


