ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.8, 6145–6151 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.8.82 Special Issue on ICMA-2020

ON SOFT FUZZY SOFT TOPOLOGICAL VECTOR SPACES AND DIFFERENTIATIONS

V. VISALAKSHI¹ AND T. YOGALAKSHMI

ABSTRACT. Basic properties of soft fuzzy soft topological vector spaces are introduced and discussed. Few results of soft fuzzy soft tangent to 0 and SFS differentiations have been established.

1. INTRODUCTION

Zadeh [?] initiated the work on fuzzy set in the year 1965. Fuzzy sets and logic have wide application in the field of Information [8] and control [9]. Chang [1] incorporated the fuzzy language in the topological structures. Ismail U. Tiryaki [10] analysed the hardness of fuzzy set. Applications of soft set was first investigated by Russian researcher Molodstov [6]. Fuzzy soft set provides more accurate solution to the decision making problems which is established by Maji, Biswas and Roy [4]. Serge Lang [7] defines a derivative of a continuous function between any two vector spaces. Katsaras and Liu [2] investigated the topological structure on vector spaces via fuzzy sets. In this connection Mario Ferraro and Foster [5] introduced the differentiability on continuous functions.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. soft fuzzy soft topological vector space, soft fuzzy soft neighbourhoods, soft fuzzy soft tangent to 0, *SFS* differentiation.

V. VISALAKSHI AND T. YOGALAKSHMI

2. Preliminaries

Definition 2.1. [6] Let P(U) be the power set of U and A be the subset of parameter E. Then (F, A) is known as soft set over U where $F : A \to P(U)$.

Definition 2.2. [4] A fuzzy soft set over the universe U is a pair (F, A) where $F : A \to F(U)$ and A is the subset of a set of parameter E.

Definition 2.3. [3] $\delta \subset I^E$ is a fuzzy topology on E iff

- (*i*) For all α constant, $\alpha \in \delta$,
- (*ii*) For all μ , $\eta \in \delta \Rightarrow \mu \land \eta \in \delta$.
- (*iii*) For all $(\mu_j)_{j \in J} \subset \delta \Rightarrow sup_{j \in J} \mu_j \in \delta$.

The member in δ is known as open fuzzy set. $\mu \in I^E$ is said to be closed iff μ^c is open.

Definition 2.4. [10] Let X be a set, $\eta \in I^X$ and M is any subset of X. Then (η, M) is said to be a soft fuzzy set in X.

3. ON SOFT FUZZY SOFT SETS

Throughout the paper $X \neq \phi$, *E* denote the collection of parameters and I = [0, 1]. Also soft fuzzy soft is denoted by *SFS*.

Definition 3.1. A SFS $\delta_E : X \to I \times P(E)$ with membership $\delta_E(p) = (\delta(p), A)$ where $\delta : X \to I$, A is the member of the collection P(E) of all subsets of E. Moreover its family is represented by SFS(X, E).

Definition 3.2. SFS characteristic function $\chi_A : X \to \{(1, E), (0, \phi)\}$ is defined as

$$\chi_A(p) = \begin{cases} (1, E), & \text{if } p \in A \subset X; \\ (0, \phi), & \text{otherwise.} \end{cases}$$

Definition 3.3. Let δ_E be a SFS set. Define

$$p_{\delta_E}(q) = \begin{cases} (\delta(p), A)(\delta(p) \in [0, 1]), & \text{if } p = q;\\ (0, \phi), & \text{otherwise.} \end{cases}$$

 p_{δ_E} is a sfs point (in short, SFSP) in SFS(X, E).

6146

Definition 3.4. Let $\lambda_E \in SFS(X, E)$ such that the universal SFS set is $\lambda_E(p) = (1, E)$, $\forall p \in X$ and it is represented by $(1, E)^{\sim}$. The null SFS set is defined as follows $\lambda_E(p) = (0, \phi)$, $\forall p \in X$ and it is represented as $(0, \phi)^{\sim}$.

Definition 3.5. Let $\delta_E \in SFS(X, E)$ such that $\delta_E(p) = (\delta(p), \mathscr{A})$, then the complement of δ_E is denoted by δ_E^c where $\delta_E^c(p) = (1, E)^{\sim}(p) - \delta_E(p) = (1 - \delta(p), E \setminus \mathscr{A})$, $\forall p \in X$.

Definition 3.6. Let δ_E and μ_E be any two SFS sets such that $\delta_E(p) = (\delta(p), \mathscr{A})$ and $\mu_E(p) = (\mu(p), \mathscr{B})$. Then

(i) $\delta_E(p) \sqsubseteq \mu_E(p) \Leftrightarrow \delta(p) \le \mu(p), \forall p \in X, \mathscr{A} \subseteq \mathscr{B}.$ (ii) $\delta_E(p) \sqsupseteq \mu_E(p) \Leftrightarrow \delta(p) \ge \mu(p), \forall p \in X, \mathscr{A} \supseteq \mathscr{B}.$ (iii) $\delta_E(p) \sqcap \mu_E(p) = (\min\{\delta(p), \mu(p)\}, \mathscr{A} \cap \mathscr{B}), \forall p \in X.$ (iv) $\delta_E(p) \sqcup \mu_E(p) = (\max\{\delta(p), \mu(p)\}, \mathscr{A} \cup \mathscr{B}), \forall p \in X.$

Definition 3.7. Let δ_E and μ_E be any two SFS sets. Then

(i) $\delta_E \Subset \mu_E \Leftrightarrow \delta_E(p) \sqsubseteq \mu_E(p), \forall p \in X.$ (ii) $\delta_E \supseteq \mu_E \Leftrightarrow \delta_E(p) \sqsupseteq \mu_E(p), \forall p \in X.$ (iii) $\delta_E = \mu_E \Leftrightarrow \delta_E(p) = \mu_E(p), \forall p \in X.$

Definition 3.8. Let $f : X \to Y$. If $\delta_E \in SFS(Y, E)$, then $f^{-1}(\delta_E)(p) = \delta_E \circ f(p) = \delta_E(f(p)), \forall p \in X$.

Definition 3.9. Let $f : X \to Y$. If $\mu_E \in SFS(X, E)$, then

$$f(\mu_E)(q) = \begin{cases} \sqcup_{p \in f^{-1}(q)} \mu_E(p), & \text{if } f^{-1}(q) \neq \phi; \\ (0, \phi), & \text{otherwise.} \end{cases}$$

Definition 3.10. A constant membership function is represented by \Re_c and if $\Re_b(p) = b$ for all $p \in X$, where $0 < b \le 1$.

Definition 3.11. Let δ_{j_E} be any SFS sets and J be an indexed set. A SFS topology on X is a collection \mathscr{T} of SFS sets satisfying:

- (i) $\forall \mathfrak{K}_b \in X \text{ and } \forall A \in P(E), \mathfrak{K}_{b_A} \in T \text{ where } \mathfrak{K}_{b_A} = (\mathfrak{K}_b(p), A) \text{ for all } p \in X.$
- (*ii*) $\delta_{j_E} \in \mathscr{T}, j \in J \Rightarrow \bigcup_{j \in J} \delta_{j_E} \in \mathscr{T}.$
- (*iii*) For any finite $J, \delta_{j_E} \in \mathscr{T}, \Rightarrow \bigoplus_{j \in J} \delta_{j_E} \in \mathscr{T}$.

Then (X, \mathscr{T}) is said to be SFS topological space, SFSTS. Any member of \mathscr{T} is SFS open set, SFSOS. SFS closed set is the complement of SFS open set and whose collection is denoted by SFSCS.

Remark 3.1. $\mathscr{T} = \{\chi_M : \forall M \in \tau\} \cup \{\mathfrak{K}_{b_A} : \forall \mathfrak{K}_b \in X \text{ and } \forall A \in P(E)\} \text{ forms an usual SFS topology.}$

Proposition 3.1. Let $f : X \to Y$. If δ_{1_E} , δ_{2_E} be any two SFS sets in X and μ_{1_E} , μ_{2_E} be any two SFS sets in Y. Then

- (i) $\delta_{1_E} \Subset \delta_{2_E} \Rightarrow f(\delta_{1_E}) \Subset f(\delta_{2_E}).$
- (*ii*) $\mu_{1_E} \Subset \mu_{2_E} \Rightarrow f^{-1}(\mu_{1_E}) \Subset f^{-1}(\mu_{2_E}).$

Definition 3.12. Let $\delta_E \in SFS(X, E)$ is said to be a SFS neighbourhood(nghbd) of a SFS point p_{δ_E} in X iff $\exists a \ \mu_E \in \mathscr{T} \ni p_{\delta_E} \Subset \mu_E \Subset \delta_E$.

Definition 3.13. A system of SFS nghbds of a SFS point p_{δ_E} is a set $\mathbb{B}(p_{\delta_E})$ of SFS nghbds of p_{δ_E} such that for each SFS nghbd δ_E of p_{δ_E} there is a $\mu_E \in \mathbb{B}(p_{\delta_E})$ such that $\mu_E \Subset \delta_E$.

Proposition 3.2. Let $f : (X, \mathscr{T}) \to (Y, \mathscr{S})$, then we have the equivalence.

- (i) f is SFS continuous.
- (*ii*) $\delta_E \in SFS(X, E)$ and each SFS nghbd δ_E of $f(\delta_E)$, \exists a SFS nghbd μ_E of δ_E such that $f(\mu_E) \Subset \delta_E$.

4. ON SFS TOPOLOGICAL VECTOR SPACES

Throughout the section \mathscr{V} is a vectorspace over the field *K*.

Definition 4.1. Let $\{\delta_{j_E}\} \in SFS(\mathcal{V}, E), j = 1, 2, 3, ..., n$. The sum $\delta_E = \delta_{1_E} + \delta_{2_E} + \delta_{3_E} + ... + \delta_{n_E}$ of $\{\delta_{j_E}\}$, is the SFS set having membership, $\delta_E(p) = \bigcup_{p_1+...+p_n=p} (\delta_{1_E}(p_1) \sqcap \delta_{2_E}(p_2), ..., \delta_{n_E}(p_n)), p \in \mathcal{V}$. The scalar product $\alpha \delta_E$, of $\alpha \in K$ and δ_E is a SFS set in \mathcal{V} that has $\alpha \delta_E(p), p \in \mathcal{V}$, given by $\alpha \delta_E(p) = \delta_E(p/\alpha)$ $\forall \alpha \neq 0, p \in \mathcal{V}$. For $\alpha = 0, \alpha \delta_E(p) = (0, \phi), p \neq 0$ or $= \bigcup_{q \in \mathcal{V}} \delta_E(q), p = 0$.

Proposition 4.1. If $f : \mathscr{V}_1 \to \mathscr{V}_2$. Then for all SFS sets δ_E , μ_E in \mathscr{V}_1 and all scalars α , $f(\delta_E + \mu_E) = f(\delta_E) + f(\mu_E)$ and $f(\alpha \delta_E) = \alpha f(\delta_E)$.

Proposition 4.2. If δ_E , $\mu_E \in SFS(\mathcal{V}, E)$ and $\alpha \in K$, $\alpha \neq 0$, then $\alpha \delta_E \Subset \mu_E \Rightarrow \delta_E \Subset (1/\alpha)\mu_E$.

Proposition 4.3. Let $\delta_E, \delta_{1_E}, \delta_{2_E}, \ldots, \delta_{n_E} \in SFS(\mathcal{V}, E)$ and $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ scalars. Then the following are equivalent.

6148

(i)
$$\alpha_1\delta_{1_E} + \alpha_2\delta_{2_E} + \ldots + \alpha_n\delta_{n_E} \subseteq \delta_E$$
.

(ii) For all p_1, p_2, \ldots, p_n in \mathscr{V} ,

Proposition 4.4. Let $(\mathcal{V}, \mathcal{T})$ be a SFS topological vector space. For every SFS point 0_{δ_E} such that $0_{\delta_E} = (\delta(0), \mathscr{A}), (0, \phi) \sqsubset (\delta(0), \mathscr{A}) \sqsubseteq (1, E), \exists$ a system of SFS nghbds $\mathbb{B}(0_{\delta_E})$ in \mathcal{V} holds.

- (i) $\forall \delta_E \in \mathbb{B}(0_{\delta_E}) \exists a \ \mu_E \in \mathbb{B}(0_{\delta_E}) \text{ with } \mu_E + \mu_E \Subset \delta_E.$
- (*ii*) $\forall \delta_E \in \mathbb{B}(0_{\delta_E}) \exists a \ \mu_E \in \mathbb{B}(0_{\delta_E})$ for which $k\mu_E \Subset \delta_E \ \forall k \in K$, $|k| \leq 1$.
- (*iii*) Every $\delta_E \in \mathbb{B}(0_{\delta_E})$ is SFS balanced.

5. ON SFS DIFFERENTIATIONS

Definition 5.1. $\sigma : (\mathscr{V}_1, \mathscr{T}_1) \to (\mathscr{V}_2, \mathscr{T}_2)$ is called SFS tangent to 0 if for each SFS nghbd μ_E of 0_{δ_E} where $0_{\delta_E}(0) = (\delta(0), \mathscr{A}), (0, \phi) \sqsubseteq (\delta(0), \mathscr{A}) \sqsubseteq (1, E)$, in \mathscr{V}_2 there exists a SFS nghbd δ_E of 0_{η_E} where $0_{\eta_E}(0) = (\eta(0), F), (0, \phi) \sqsubset (\eta(0), F) \sqsubseteq (\delta(0), A)$ in \mathscr{V}_1 such that $\sigma(t\delta_E) \Subset \rho(t)\mu_E$ for some function $\rho(t)$.

Proposition 5.1. If the function σ is SFS tangent to 0, then σ is SFS continuous at $0 \in \mathscr{V}_1$.

Proposition 5.2. If σ and η are two functions SFS tangent to 0 then $\sigma + \eta$ is a function SFS tangent to 0.

Proposition 5.3. Let $(\mathscr{V}_1, \mathscr{T}_1)$, $(\mathscr{V}_2, \mathscr{T}_2)$, $(\mathscr{V}_3, \mathscr{T}_3)$ be any three SFS topological vector spaces over K with E as the set of all parameters. Composition of SFS continuous linear map and SFS tangent to zero is SFS tangent to zero.

Definition 5.2. Let $(\mathscr{V}_1, \mathscr{T}_1)$ and $(\mathscr{V}_2, \mathscr{T}_2)$ be any two SFS topological vector spaces, each of them is a SFS \mathscr{T}_1 space. A SFS continuous function $f : \mathscr{V}_1 \to \mathscr{V}_2$ is called a SFS differentiable at $p \in \mathscr{V}_1$ if there is a linear SFS continuous function u on \mathscr{V}_1 satisfies $f(p+q) = f(p) + u(q) + \sigma(q), q \in \mathscr{V}_1$ where σ is SFS tangent to 0 and u is SFS derivative of f at p.

Proposition 5.4. Let $(\mathscr{V}_1, \mathscr{T}_1)$, $(\mathscr{V}_2, \mathscr{T}_2)$, $(\mathscr{V}_3, \mathscr{T}_3)$ be any three SFS topological vector spaces and also SFS \mathscr{T}_1 space. Let f and g be a SFS continuous function on \mathscr{V}_1 and \mathscr{V}_2 respectively. Composition of two SFS differentiable function is SFS differentiable.

V. VISALAKSHI AND T. YOGALAKSHMI

Proof. Assume that f and g are SFS differentiable. Hence f(p+r) - f(p) = $f'(p)(r) + \sigma(r), r \in V_1, g(q+s) - g(q) = g'(q)(s) + \eta(s), s \in \mathscr{V}_2$, where σ and η are each SFS tangent to 0. Defining $h = f \circ q$, after substitution we get, $h(p+r) - h(p) = g'(q)(f'(p)(r)) + g'(q)(\sigma(r)) + \eta(f'(p)(r) + \sigma(r)), \ r \in \mathscr{V}_1.$ By Proposition 5.3, $q'(q) \circ \sigma$ is SFS tangent to 0. Consider the function $\eta \circ$ $(f'(p) + \sigma)$. For every SFS nghbd μ_E of 0_{ν_E} where $0_{\nu_E}(0) = (\nu(0), F)$, $(0, \phi) \sqsubset$ $(\nu(0), F) \sqsubseteq (1, E)$ in \mathscr{V}_3 there is a SFS nghbd δ_E of 0_{δ_E} where $0_{\delta_E}(0) = (\delta(0), A)$, $(0,\phi) \sqsubset (\delta(0),A) \sqsubseteq (\nu(0),F)$ in \mathscr{V}_2 such that $\eta(t\delta_E)(z) \sqsubseteq \rho(t)\mu_E(z), z \in \mathscr{V}_3.$ Given δ_E there epists a SFS nghbd δ'_E of 0_{δ_E} such that $\delta'_E + \delta'_E \in \delta_E$. Suppose that both δ_E and δ'_E belongs to a system of SFS nghbds $\mathbb{B}(0_{\delta_E})$. By the SFS continuity of f'(p) there is a SFS nghbd γ_E of 0_{β_E} where $0_{\beta_E}(0) = (\beta(0), G)$, $(0,\phi) \sqsubset (\beta(0),G) \sqsubseteq (\delta(0),A)$ in \mathscr{V}_1 such that $f'(p)(\gamma_E)(q) \sqsubseteq \delta'_E(q)$, which implies that $tf'(p)(\gamma_E)(q) \sqsubseteq t\delta'_E(q)$, that is $f'(p)(t(\gamma_E))(q) \sqsubseteq t\delta'_E(q)$, $q \in \mathscr{V}_2$. For every δ_E' there exists a SFS nghbd γ_E' of 0_{β_E} in \mathscr{V}_1 for which $\sigma(t\gamma_E')(q) \sqsubseteq \rho(t)\delta_E'(q)$ and, for $\mid \rho(t)/t \mid \leq 1$, $\rho(t)\delta'_{E}(q) \sqsubseteq t\delta'_{E}(q)$, $q \in \mathscr{V}_{2}$. Let $\gamma_{1_{E}} = \gamma_{E} \cap \gamma'_{E}$ and using Proposition 3.1, we obtain $[\sigma(t\gamma_{1_E}) + f'(p)(t\gamma_{1_E})](q) \sqsubseteq t\delta_E(q)$, which implies that $\eta(\sigma(t\gamma_{1_E}) + f'(p)(t\gamma_{1_E})) \Subset \eta(t\delta_E) \Subset \rho(t)\mu_E$, that is the function $\eta \circ (f'(p) + \sigma)$ from \mathscr{V}_1 to \mathscr{V}_3 is SFS tangent to 0. Thus $h(p+r) - h(p) = g'(q) \circ f'(p)(r) + \zeta(r)$, $r \in V_1$, where $g'(q) \circ f'(p)$ is linear and SFS continuous, and ζ , is SFS tangent to 0.

REFERENCES

- [1] C.L. CHANG: Fuzzy Topological Spaces, J. Math. Anal. Appl., 24 (1968), 182–190.
- [2] A.K. KATSARAS, D. B. LIU: Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, J. Math. Anal. Appl., 58 (1977), 135–146.
- [3] R. LOWEN: Fuzzy Topological Spaces and Fuzzy Compactness, J. Math. Anal. Appl., 56 (1976), 621–633.
- [4] P.K. MAJI, R. BISWAS, A.R. ROY: *Fuzzy Soft Set Theory*, Journal of Fuzzy Mathematics, 9 (2001), 589–602.
- [5] M. FERRARO, D.H. FOSTER: Differentiation of Fuzzy Continuous Mappings on Fuzzy Topological Vector Spaces, J. Math. Anal. Appl., 121 (1987), 589–601.
- [6] D. MOLODTSOV: Soft Set Theory First Results, Computers and Mathematics with Applications, 37 (1999), 19–31.
- [7] S. LANG: Introduction to Differentiable Manifolds, John Wiley and Sons, New York, 1967.
- [8] P. SMETS: The Degree of Belief in a Fuzzy Event, Information Sciences, 25 (1981), 1–19.

6150

- [9] M. SUGENO: An Introductory Survey of Fuzzy Control, Information Sciences, **36** (1985), 59–83.
- [10] I.U. TIRYAKI: *Fuzzy Sets Over the Poset I*, Hacettepe Journal of Mathematics and Statistics, 37 (2008), 143–166.

DEPARTMENT OF MATHEMATICS SRM INSTITUTE OF SCIENCE AND TECHNOLOGY KATTANKULATHUR, CHENNAI, INDIA *Email address*: visalakv@srmist.edu.in

DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES VIT, VELLORE, INDIA Email address: visalsenthil86@gmail.com