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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF FORCED FRACTIONAL
PARTIAL DIFFERENTIAL EQUATIONS

N. NAGAJOTHI1 AND V. SADHASIVAM

ABSTRACT. This paper deals with the boundedness of nonoscillatory solutions
of forced fractional partial differential equations subject to the Robin and Dirich-
let boundary conditions. The technique used in obtaining their results will ap-
ply related fractional differential equations with Psi-Hilfer derivative. The main
results are illustrated with an example.

1. INTRODUCTION

Fractional calculus has gained importance during the past three decades due
to its applicability in diverse fields science and engineering. The origin of frac-
tional calculus traces back to Newton and Leibniz in the seventeenth century.
The fractional differential equations find numerous applications in the field of
feed back amplifiers, visco-elasticity, electrical circuits, neuron modeling encom-
passing different branches of physics, fractional multi poles, electro analytical
chemistry and biological sciences. It has allowed the operations of differenti-
ation and integration to any fractional order. The order may take on any real
or imaginary value. Since the beginning of the fractional calculus, there are
numerous definitions of integrals and fractional derivatives, and over time, new
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derivatives and fractional integrals arise. These integrals and fractional deriva-
tives have a different kernel and this makes the number of definitions wide, see
the references [2,5,8,9,11,15,16,18–20,22–25] and those cited there in.

Recently, the research on the theory of fractional partial differential equations
is a very interesting topic and some results are established. We refer the articles
[14,21] for fractional partial differential equations.

Results on the oscillatory and asymptotic behavior of solutions of fractional
and integro-differential equations are relatively scarce in the literature; some
results can be found, for example, in [1, 3, 4, 6, 7, 10, 12, 17] and the references
cited therein. Currently there does not appear any such results for forced frac-
tional partial differential equations of type (1.1). Motivated by this gap, we
propose the following model, which obviously generalizes the previous models.

Now, we consider the forced fractional partial differential equation of the form

(1.1) cD
α,β;ψ
+,t y(x, t)+f(t, u(x, t)) = b(t)∆u(x, t)+e(x, t), c > 1, (x, t) ∈ Ω×R+

where y(x, t) = ∂
∂t
a(t) ∂

∂t
u(x, t), cD

α,β;ψ
+,t is the ψ - Hilfer fractional partial deriva-

tive of order α (0 < α < 1) and type β (0 ≤ β ≤ 1). Here Ω is a bounded domain
in RN with a piecewise smooth boundary ∂Ω and ∆ is the Laplacian operator in
the Euclidean N-space RN .

Eq.(1.1) is supplemented with the boundary condition

(1.2)
∂u(x, t)

∂γ
+ g(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω× R+,

where γ is the unit exterior normal vector to ∂Ω and g(x, t) is non-negative
continuous function on ∂Ω× R+ and

(1.3) u(x, t) = 0, (x, t) ∈ ∂Ω× R+.

In what follows, we always assume without mentioning that

(A1) a(t) ∈ Cα+1([c,∞),R+),R+ = (0,∞);

(A2) b ∈ C(R+,R+);

(A3) f : [c,∞) × R → R are convex in (0,∞) and there exist a continuous
function k : [c,∞) → (0,∞) and a real number µ with 0 < µ < 1 such
that xf(t, x) > k(t)|x|µ+1 for x 6= 0, t ≥ c;

(A4) e(x, t) ∈ C(Ḡ,R).
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By a solution of (1.1), (1.2) or (1.1), (1.3) we mean a function u(x, t) ∈
C2+α(G) ∩ C(Ḡ) which satisfies (1.1) on G and the associated boundary condi-
tion (1.2) (or (1.3)). A nontrivial solution u(x, t) of (1.1), (1.2) is said to be
oscillatory in G if it has arbitrarily large zeros, otherwise, it is nonoscillatory. An
equation (1.1) is called oscillatory if all its solutions are oscillatory.

In this paper, we begin with some preliminaries in Section 2. In Section 3,
we prove the sufficient conditions for every nonoscillatory solution u(x, t) of
equations (1.1), (1.2) ((1.1), (1.3)) to be bounded. In Section 4, we present
an example that apply the results established. Finally, some conclusions are
presented at the end of this article.
Define

(1.4) v(t) =
1

|Ω|

∫
Ω

u(x, t)dx, where|Ω| =
∫

Ω

dx,

(1.5) E(t) =
1

|Ω|

∫
Ω

e(x, t)dx.

2. PRELIMINARIES

Definition 2.1. The left-sided fractional integral of a function g with respect to
another function ψ on [a, b] is defined by

(Iα;ψg)(t) =
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 g(s)ds, t > a.

Definition 2.2. Let ψ′(t) 6= 0 (−∞ ≤ a < t < b ≤ ∞) and α > 0, n ∈ N. The
Riemann-Liouville fractional derivative of a function g with respect to ψ of order α
correspondent to the Riemann-Liouville is defind by

(Dα;ψg)(t) =
1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(s) (ψ(t)− ψ(s))n−α−1 g(s)ds,

where n = [α] + 1.

Definition 2.3. Let α > 0, n ∈ N, I = [a, b] is the interval (−∞ ≤ a < t < b <∞),
g, ψ ∈ Cn([a, b],R) two functions such that ψ is increasing and ψ′ 6= 0, for all x ∈ I.
The left ψ - Caputo derivative of g of order α is given by

(Dα;ψg)(t) = In−α;ψ

(
1

ψ′(t)

d

dt

)n
g(t),



6180 N. NAGAJOTHI AND V. SADHASIVAM

where n = [α] + 1 for α /∈ N and α = n for α ∈ N.

Definition 2.4. The ψ - Hilfer fractional derivative of a function g of order α is
given by

(Dα,β;ψg)(t) = Iβ(1−α);ψ

(
1

ψ′(t)

d

dt

)
I(1−β)(1−α);ψg(t).

The ψ - Hilfer fractional derivatives as above defined, can be written in the following

Dα,β;ψg(t) = Iγ−α;ψDγ;ψg(t).

Definition 2.5. The ψ - Hilfer fractional partial derivative of a function u(x, t) of
order α is given by

(Dα,β;ψ
+,t u)(x, t) = Iβ(1−α);ψ

(
1

ψ′(t)

∂

∂t

)
I(1−β)(1−α);ψu(x, t).

In the definitons above Γ(x) is the usual Gamma function given by

Γ(x) =

∫ ∞
0

sx−1e−sds, x > 0.

Lemma 2.1. Let α and p be positive constants such that

p(α− 1) + 1 > 0.

Then
∫∞

0
(t− s)p(α−1)epsds ≤ Qept, t ≥ 0, where

Q =
Γ(1 + p(α− 1))

p1+p(α−1)
.

Lemma 2.2. [13] If X and Y are nonnegative and 0 < µ < 1, then

Xµ − (1− µ)Y µ − µXY µ−1 ≤ 0,

where inequality holds if and only if X = Y .

3. MAIN RESULTS

Theorem 3.1. If u(x, t) is a solution of (1.1), (1.2) for which u(x, t) > 0 in G,
then the function v(t) defined by (1.4) satisfy the fractional differential inequality

(3.1) cD
α,β;ψ
+ Y (t) + f(t, v(t))) ≤ E(t).
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Proof. Suppose that u(x, t) is a nonoscillatory solution of (1.1), (1.2). Without
loss of generality, we may assume that the solution u(x, t) > 0 in G× [t0,∞) for
t ≥ t0 for some t0 ≥ c.
Integrating (1.1) over Ω, we obtain

(3.2)
∫

Ω
cD

α,β;ψ
+,t y(x, t)dx+

∫
Ω

f(t, u(x, t))dx =

∫
Ω

b(t)∆u(x, t)dx+

∫
Ω

e(x, t)dx.

Using Green’s formula, it is obvious that

(3.3)
∫

Ω

∆u(x, t)dx = 0, t ≥ t1.

By applying, Jensen’s inequality, we have

(3.4)
∫

Ω

f(t, u(x, t))dx ≥ f(t,

∫
Ω

u(x, t)dx) ≥ f(t, v(t)).

Combining (3.2)-(3.4) and using (1.5), we get

(3.5) cD
α,β;ψ
+ Y (t) + f(t, v(t))) ≤ E(t).

�

The above equation is equivalent to the nonlinear Volterra type integral equation

Y (t) ≤ c0 +
1

Γ(α)

∫ t

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1[E(ξ)− f(ξ, v(ξ))]dξ, c > 1,

where α > 0. By taking the limit as β → 1 and choosing ψ(t) = t, the equation
(3.5) reduces to usual Caputo fractional differential equations. So our newly
obtained oscillation criteria can be applied to those class of Caputo fractional
differential equations [12] also and in addition to that for a different choices of
ψ a wider class of differential equations can be covered.

Theorem 3.2. Let us assume the Conditions (A1) − (A4) hold and suppose that
ψ′(ξ) ≥ λ for some λ > 0 and for all ξ 6= 0. Also assume that there exist real
number p > 1 and 0 < α < 1 such that p(α− 1) + 1 > 0, there are numbers S > 0

and σ > 1 such that

(3.6)
ψ(t)

a(t)
≤ Se−σt

and there exists a continuous function η : [c,∞)→ (0,∞) such that

(3.7)
∫ ∞
c

e−qξηq(ξ)dξ <∞, where q =
p

p− 1
.
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If

(3.8) lim sup
t→∞

1

t

∫ t

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1E(ξ)dξ <∞,

(3.9) lim inf
t→∞

1

t

∫ t

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1E(ξ)dξ > −∞,

where

(3.10) lim
t→∞

1

t

∫ t

c

∫ ζ

t1

ψ′(ξ)(ψ(ζ)− ψ(ξ))α−1Hµ(ξ)dξdζ <∞,

then any non-oscillatory solution u(x, t) of (1.1), (1.2) are bounded.

Proof. Let us suppose that v(t) be a non-oscillatory solution of (3.5). We may
assume that v(t) > 0 for t ≥ t1 for some t1 > c. We let F (t) = f(t, v(t)) and we
use (A1)− (A4). We see that the equation (3.5) can be written as

(a(t)v′(t))′ ≤ c0 +
1

Γ(α)

∫ t1

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1|E(ξ)|dξ

− 1

Γ(α)

∫ t1

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1|F (ξ)|dξ

+
1

Γ(α)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1E(ξ)dξ

− 1

Γ(α)

∫ t

t1

ψ′(ξ)[k(ξ)vµ(ξ)− η(ξ)v(ξ)](ψ(t)− ψ(ξ))α−1dξ

− 1

Γ(α)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1η(ξ)v(ξ)dξ.

(3.11)

Using the fact that (ψ(t) − ψ(ξ))α−1 ≤ (ψ(t1) − ψ(ξ))α−1 in the first and second
integrals in (3.11), we get

(a(t)v′(t))′ ≤ c1 + 1
Γ(α)

∫ t
t1
ψ′(ξ)(ψ(t)− ψ(ξ))α−1E(ξ)dξ

− 1
Γ(α)

∫ t
t1
ψ′(ξ)[k(ξ)vµ(ξ)− η(ξ)v(ξ)](ψ(t)− ψ(ξ))α−1dξ

(3.12) − 1

Γ(α)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1η(ξ)v(ξ)dξ,

where c1 = c0 + 1
Γ(α)

∫ t1
c
ψ′(ξ)(ψ(t1)− ψ(ξ))α−1|E(ξ)|dξ

− 1

Γ(α)

∫ t1

c

ψ′(ξ)(ψ(t1)− ψ(ξ))α−1|F (ξ)|dξ.
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Applying Lemma 2.2, with

X = k
1
µ (ξ)v(ξ), Y =

(
1

µ
η(ξ)k

−1
µ (ξ)

) 1
µ−1

,

we obtain k(ξ)vµ(ξ)− η(ξ)v(ξ) ≤ (1− µ)η
µ
µ−1 (ξ)k

1
1−µ (ξ)µ

µ
1−µ := Hµ(ξ).

and substituting this into (3.11), we have

(a(t)v′(t))′ ≤ c1+
1

Γ(α)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1E(ξ)dξ

− 1

Γ(α)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1Hµ(ξ)dξ

− 1

Γ(α)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1η(ξ)v(ξ)dξ.

(3.13)

An integrating of (3.12) from t1 to t, we have

a(t)v′(t) ≤a(t1)v′(t1) + c1(t− t1) +
1

Γ(α)

∫ t

t1

∫ ζ

t1

ψ′(ξ)(ψ(ζ)− ψ(ξ))α−1E(ξ)dξdζ

− 1

Γ(α)

∫ t

t1

∫ ζ

t1

ψ′(ξ)(ψ(ζ)− ψ(ξ))α−1Hµ(ξ)dξdζ

− 1

Γ(α)

∫ t

t1

∫ ζ

t1

ψ′(ξ)(ψ(ζ)− ψ(ξ))α−1η(ξ)v(ξ)dξdζ

≤a(t1)v′(t1) + c1(t− t1)− 1

Γ(α)

∫ t

t1

∫ ζ

t1

ψ′(ξ)(ψ(ζ)− ψ(ξ))α−1Hµ(ξ)dξdζ

+
1

Γ(α + 1)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))αE(ξ)dξ

− ψ(t)

Γ(α + 1)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1η(ξ)v(ξ)dξ.

In view of (3.8)-(3.10), the last inequality implies

a(t)v′(t) ≤ c2 + c3t−
ψ(t)

Γ(α + 1)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1η(ξ)v(ξ)dξ
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for some positive constants c2 and c3. Integrating (3.13) from t1 to t and noting
condition (3.6), we see that

v(t) ≤v(t1) + c2

∫ t

t1

1

a(ξ)
dξ + c3

∫ t

t1

ξ

a(ξ)
dξ

− 1

Γ(α + 1)

∫ t

t1

ψ′(ξ)ψ(ζ)

a(ζ)

∫ ζ

t1

(ψ(ζ)− ψ(ξ))α−1η(ξ)v(ξ)dξdζ

≤ c4 −
1

Γ(α + 1)

∫ t

t1

ψ′(ξ)ψ(ζ)

a(ζ)

∫ ζ

t1

(ψ(ζ)− ψ(ξ))α−1η(ξ)v(ξ)dξdζ,

for some constants c4 > 0. From the mean value theorem,

(3.14) v(t) ≤ c4 +
λα

Γ(α + 1)

∫ t

t1

ψ(ζ)

a(ζ)

∫ ζ

t1

(ζ − ξ)α−1η(ξ)v(ξ)dξdζ

Applying Hölder’s inequality and Lemma 2.1, we obtain∫ ζ
t1

((ζ−ξ)α−1eξ)(e−ξη(ξ)v(ξ))dξ ≤
(∫ ζ

t1
(ζ − ξ)p(α−1)epξdξ

) 1
p
(∫ ζ

t1
e−qξηq(ξ)vq(ξ)dξ

) 1
q

≤
(∫ ζ

0
(ζ − ξ)p(α−1)epξdξ

) 1
p
(∫ ζ

t1
e−qξηq(ξ)vq(ξ)dξ

) 1
q

(3.15) ≤
(
Qepζ

)(∫ ζ

t1

e−qξηq(ξ)vq(ξ)dξ

) 1
q

.

From (3.6), (3.14) and (3.15),

v(t) ≤c4 +
Q

1
pλα

Γ(α + 1)

∫ t

t1

ψ(ζ)eζ

a(ζ)

(∫ ζ

t1

e−qξηq(ξ)vq(ξ)dξ

) 1
q

dζ

≤ c4 +
Q

1
pλαS

Γ(α + 1)

∫ t

t1

e−(σ−1)ζ

(∫ ζ

t1

e−qξηq(ξ)vq(ξ)dξ

) 1
q

dζ.

(3.16)

Since σ > 1 and the integral on the far right in (3.16) is increasing, we obtain
the estimate

(3.17) v(t) ≤ 1 + c4 +K

(∫ ζ

t1

e−qξηq(ξ)vq(ξ)dξ

) 1
q

where K = Q
1
p Sλα

(σ−1)Γ(α+1)
.
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Applying the following inequality:
(x+ y)q ≤ 2q−1(xq + yq) for x, y ≥ 0 and q > 1, to (3.17) gives:

vq(t) ≤ 2q−1(1 + c4)q + 2q−1Kq

(∫ ζ

t1

e−qξηq(ξ)vq(ξ)dξ

)
.

Setting A = 2q−1(1 + c4)q, B = 2q−1Kq and W (t) = vq(t) so that v(t) = W
1
q (t),

equation (3.17) becomes

W (t) ≤ A+B

(∫ ζ

t1

e−qξηq(ξ)W (ξ)dξ

)
for t ≥ t1. By Grounwall’s inequality and condition (3.7), we see that W (t) is
bounded, and so v(t) is bounded. Clearly, a similar argument holds if v(t) is an
eventually negative solution of (1.1), (1.2). �

Next, we consider the forced fractional partial differential equation
(3.18)

cD
α,β;ψ
+,t y(x, t) + f(t, u(x, t)) = b(t)∆u(x, t) + e(x, t), c > 1, (x, t) ∈ Ω×R+ = G,

where y(x, t) = a(t) ∂
∂t
u(x, t). We now give sufficient conditions under which any

non-oscillatory solution u(x, t) of (3.18), (1.2) is bounded.

Theorem 3.3. If u(x, t) is a solution of (3.18), (1.2) for which u(x, t) > 0 in G,
then the function v(t) defined by (1.4) satisfies the fractional differential inequality

(3.19) cD
α,β;ψ
+ Y (t) + f(t, v(t))) ≤ E(t).

Proof. This proof is the same as that of Theorem 3.1 and hence is omitted. �

Theorem 3.4. Let Conditions (A1) − (A4) hold and assume that ψ′(ξ) ≥ λ for
some λ > 0 and for all ξ 6= 0. Also assume that there exist real number p > 1

and 0 < α < 1 such that p(α − 1) + 1 > 0. Suppose that there exists a continuous
function η : [c,∞)→ (0,∞) such that (3.7) holds and

1

a(t)
≤ Se−σt

for some S > 0 and σ > 1. If

lim sup
t→∞

∫ t

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1E(ξ)dξ <∞,

lim inf
t→∞

∫ t

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1E(ξ)dξ > −∞,
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lim sup
t→∞

∫ t

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1Hµ(ξ)dξ <∞,

then any nonoscillatory solution u(x, t) of (3.18), (1.2) is bounded.

Proof. Suppose that v(t) be a nonoscillatory solution of (3.19). We may assume
that v(t) > 0 for t ≥ t1 for some t1 > c. We let F (t) = f(t, v(t)) and we use
(A1)− (A4). We see that the equation (3.19) can be written as

a(t)v′(t) ≤ c0 +
1

Γ(α)

∫ t1

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1|E(ξ)|dξ

− 1

Γ(α)

∫ t1

c

ψ′(ξ)(ψ(t)− ψ(ξ))α−1|F (ξ)|dξ

+
1

Γ(α)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1E(ξ)dξ

− 1

Γ(α)

∫ t

t1

ψ′(ξ)[k(ξ)vµ(ξ)− η(ξ)v(ξ)](ψ(t)− ψ(ξ))α−1dξ

− 1

Γ(α)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1η(ξ)v(ξ)dξ

≤M − 1

Γ(α)

∫ t

t1

ψ′(ξ)(ψ(t)− ψ(ξ))α−1η(ξ)v(ξ)dξ,

(3.20)

for some positive constant M . An integration of (3.20) from t1 to t yields

v(t) ≤ v(t1)−M
∫ t

t1

1

a(ξ)
dξ− 1

Γ(α)

∫ t

t1

1

a(ζ)

∫ ζ

t1

ψ′(ξ)(ψ(ζ)−ψ(ξ))α−1η(ξ)v(ξ)dξdζ.

The rest part of the proof is similar to that of Theorem 3.2 and hence is omitted.
�

Similar reasoning to that used in the sublinear case guarantees the following
theorems for the integro-differential equations (1.1), (1.2) and (3.18), (1.2) in
case µ = 1.

Theorem 3.5. Let µ = 1 and the hypotheses of Theorem 3.2 and Theorem 3.4 hold
with m(t) = k(t). Then the conclusion of Theorems 3.2 and Theorem 3.4 holds.

Next, we establish sufficient conditions under which any non-oscillatory solu-
tion u(x, t) of (3.18), (1.3) is bounded. For this we need the following:
The smallest eigen value β0 of the Dirichlet problem

∆ω(x) + βω(x) = 0 in Ω
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ω(x) = 0 on ∂Ω,

is positive and the corresponding eigen function φ(x) is positive in Ω.

Theorem 3.6. Let all the conditions of Theorem 3.4 hold. Then any non-oscillatory
solution u(x, t) of (3.18), (1.3) is bounded.

On the other hand, one can deduce a wider class of fractional partial differ-
ential equations by choosing various function for ψ and taking the limit of the
parameter α and β. Now, we deduce some new results for the class of Katugam-
pola and Hadamard fractional partial differential equations and state them as
following Corollaries.

Let ψ(t) = tρ and taking the limit β → 0, then the equation (1.1) reduces to
the Katugampola fractional partial differential equation of the form
(3.21)

cD
α,β;tρ

+,t y(x, t) + f(t, u(x, t)) = b(t)∆u(x, t) + e(x, t), c > 1, (x, t) ∈ Ω×R+ = G.

together with the boundary condition (1.2). After reducing the multi dimen-
sional problem to one dimensional problem, (3.21) reduces the following frac-
tional differential inequality of the form

cD
α,β;tρ

+ Y (t) + f(t, v(t))) ≤ E(t).

It’s equivalent to the nonlinear Voltera type integral equation

Y (t) ≤ c0 +
ρ

Γ(α)

∫ t

c

ξρ−1(tρ − ξρ)α−1[E(ξ)− f(ξ, v(ξ))]dξ, c > 1, α > 0.

Corollary 3.1. Let Conditions (A1)−(A4) hold and assume that ξρ−1 ≥ λ
ρ

for some
λ > 0 and for all ξ, ρ 6= 0. Also assume that there exist real number p > 1 and
0 < α < 1 such that p(α − 1) + 1 > 0, there are numbers S > 0 and σ > 1 such
that

tρ

a(t)
≤ Se−σt

and the condition (3.7) of Theorem 3.2 holds. If

lim sup
t→∞

ρ

t

∫ t

c

ξρ−1(tρ − ξρ)α−1E(ξ)dξ <∞,

lim inf
t→∞

ρ

t

∫ t

c

ξρ−1(tρ − ξρ)α−1E(ξ)dξ > −∞,

lim
t→∞

ρ

t

∫ t

c

∫ ζ

t1

ξρ−1(tρ − ξρ)α−1Hµ(ξ)dξdζ <∞,
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then any non-oscillatory solution u(x, t) of (3.18), (1.2) are bounded.

Next, we consider the forced fractional partial differential equation
(3.22)

cD
α,β;tρ

+,t y(x, t) + f(t, u(x, t)) = b(t)∆u(x, t) + e(x, t), c > 1, (x, t) ∈ Ω×R+ = G,

where y(x, t) = a(t) ∂
∂t
u(x, t). After reducing the multi dimensional problem

to one dimensional problem, we obtain the following fractional differential in-
equality

cD
α,β;tρ

+ Y (t) + f(t, v(t))) ≤ E(t).

Corollary 3.2. Let Conditions (A1)−(A4) hold and assume that ξρ−1 ≥ λ
ρ

for some
λ > 0 and for all ξ, ρ 6= 0. Also assume that there exist real number p > 1 and
0 < α < 1 such that p(α − 1) + 1 > 0. Suppose that there exists a continuous
function η : [c,∞)→ (0,∞) such that (3.7) holds and

(3.23)
1

a(t)
≤ Se−σt

for some S > 0 and σ > 1. If

(3.24) lim sup
t→∞

ρ

∫ t

c

ξρ−1(tρ − ξρ)α−1E(ξ)dξ <∞,

lim inf
t→∞

ρ

∫ t

c

ξρ−1(tρ − ξρ)α−1E(ξ)dξ > −∞,

(3.25) lim sup
t→∞

ρ

∫ t

c

ξρ−1(tρ − ξρ)α−1Hµ(ξ)dξ <∞,

then any non-oscillatory solution u(x, t) of (3.22), (1.2) is bounded.

Let ψ(t) = ln(t) and taking the limit β → 0, then the equation (1.1) reduces
to the Hadamard fractional partial differential equation of the following form
(3.26)

cD
α,β;ln(t)
+,t y(x, t)+f(t, u(x, t)) = b(t)∆u(x, t)+e(x, t), c > 1, (x, t) ∈ Ω×R+ = G.

together with the boundary condition (1.2). After reducing the multi dimen-
sional problem to one dimensional problem, (3.26) reduces the following frac-
tional partial inequality of the form

cD
α,β;ln(t)
+ Y (t) + f(t, v(t))) ≤ E(t).
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It’s equivalent to the nonlinear Voltera type integral equation is

Y (t) ≤ c0 +
1

Γ(α)

∫ t

c

(ln(t)− ln(ξ))α−1[E(ξ)− f(s, v(ξ))]
dξ

ξ
, c > 1, α > 0.

Corollary 3.3. Let Conditions (A1) − (A4) hold and assume that 1
ξ
≥ λ for some

λ > 0 and for all ξ 6= 0. Also assume that there exist real number p > 1 and
0 < α < 1 such that p(α − 1) + 1 > 0, there are numbers S > 0 and σ > 1 such
that

(3.27)
ln(t)

a(t)
≤ Se−σt

and the condition (3.7) of Theorem 3.2 holds. If

lim sup
t→∞

1

t

∫ t

c

(ln(t)− ln(ξ))α−1E(ξ)
dξ

ξ
<∞,

lim inf
t→∞

1

t

∫ t

c

(ln(t)− ln(ξ))α−1E(ξ)
dξ

ξ
> −∞,

lim
t→∞

1

t

∫ t

c

∫ ζ

t1

(ln(t)− ln(ξ))α−1Hµ(ξ)
dξ

ξ
dζ <∞,

then any nonoscillatory solution u(x, t) of (3.26), (1.2) is bounded.

Next, we consider the forced fractional partial differential equation
(3.28)

cD
α,β;ln(t)
+,t y(x, t)+f(t, u(x, t)) = b(t)∆u(x, t)+e(x, t), c > 1, (x, t) ∈ Ω×R+ = G,

where y(x, t) = a(t) ∂
∂t
u(x, t). After reducing the multi dimensional problem

to one dimensional problem, we obtain the following fractional differential in-
equality

cD
α,β;ln(t)
+ Y (t) + f(t, v(t))) ≤ E(t).

Corollary 3.4. Let the conditions (A1) − (A4) hold and assume that 1
ξ
≥ λ for

some λ > 0 and for all ξ 6= 0. Also assume that there exist real number p > 1

and 0 < α < 1 such that p(α − 1) + 1 > 0. Suppose that there exists a continuous
function η : [c,∞)→ (0,∞) such that (3.7) holds and

1

a(t)
≤ Se−σt

for some S > 0 and σ > 1. If

lim sup
t→∞

∫ t

c

(ln(t)− ln(ξ))α−1E(ξ)
dξ

ξ
<∞,
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lim inf
t→∞

∫ t

c

(ln(t)− ln(ξ))α−1E(ξ)
dξ

ξ
> −∞,

lim sup
t→∞

∫ t

c

(ln(t)− ln(ξ))α−1Hµ(ξ)
dξ

ξ
<∞,

then any nonoscillatory solution u(x, t) of (3.28), (1.2) is bounded.

4. EXAMPLES

Example 1. Consider the Katugampola fractional partial differential equation of
the form cD

α,β;tρ

+,t y(x, t) + k(t)|u(x, t)|µ−1u(x, t)

(4.1) = t∆u(x, t) + e−(4t)ρ , c > 1, (x, t) ∈ Ω× R+ = G,

which satisfies the boundary condition (1.2), then the corresponding nonlinear
Volterra integral equation is

Y (t) ≤ c0 +
ρ

Γ(α)

∫ t

c

ξρ−1(tρ− ξρ)−
1
2 [e−(4t)ρ− k(t)|v(t)|µ−1v(t)]dξ, c > 1, α > 0.

Here b(t) = t, f(t, v(t)) = k(t)|v(t)|µ−1v(t), a(t) = e4t

S
, S > 0, k(t) = e(−2t)ρ, E(t) =

e(−4t)
ρ
, α = 1

2
, p = 3

2
> 1. Then q = p

p−1
= 3 and p(α − 1) + 1 = 1

4
> 0, σ = 4, c =

mo = 4ρ and k(t) = η(t) thus the conditions (3.23) and (3.7) become

1

a(t)
=

S

e4t
≤ Se−4t

and ∫ t

c

e−qξηq(ξ)dξ =

∫ t

mo

e−3se(−2ξ)
3ρ
dξ =

e3m0(1 + 2ρ)

3(1 + 2ρ)
<∞.

With k(t) = η(t), we have∫ t

m0

ρξρ−1(tρ−ξρ)α−1η(ξ)(1−µ)µ
µ

1−µdξ = ρ(1−µ)µ
µ

1−µ

∫ t

m0

ξρ−1(tρ−ξρ)−
1
2 e(−2ξ)ρdξ.

Letting ζ = tρ − ξρ + 4ρ, we get
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∫ t

m0

ξρ−1(tρ − ξρ)−
1
2 e(−2ξ)ρdξ =

∫ 4ρ

tρ
(ζ − 4ρ)α−1e−(2ζ)ρ(

−dζ
ρ

)

=
1

ρ

∫ tρ

4ρ
(ζ − 4ρ)−

1
2 e−2ρ(tρ+4ρ−ζ)dζ

=
1

ρe2ρ(tρ+4ρ)

∫ 8ρ

4ρ
(ζ − 4ρ)−

1
2 e2ρζdζ +

1

ρe2ρ(tρ+4ρ)

∫ tρ

8ρ
(ζ − 4ρ)−

1
2 e2ρζdζ

= 2e(3.5)ρ(8ρ − 4ρ)
1
2 +

4−
ρ
2

2ρ
(e2ρ(tρ−8ρ)).

So (3.25) holds. Finally,∫ t

m0

ξρ−1(tρ − ξρ)−
1
2E(ξ)dξ =

∫ t

m0

ξρ−1(tρ − ξρ)−
1
2 e(−4ξ)ρdξ <∞.

So (3.24) satisfied. Hence by Corollary 3.2, every nonoscillatory solution u(x,t)
with the boundary condition (1.2) of the equation (4.1) is bounded.

Remark. By taking ψ(t) = ln t and taking the lim β → 0, we get a another class
of Hadamard fractional partial differential equations of the form

cD
α,β;ln t
+,t y(x, t) + k(t)|u(x, t)|µ−1u(x, t)

= t2∆u(x, t) +
(lnt− ln ξ)

1
4

ξ
, c > 1, (x, t) ∈ Ω× R+ = G,

with the boundary condition (1.2). Let α = 3
4
, p = 5

4
, q = 5, k(t) = η(t) = e−t, c =

2, f(t, x(t)) = k(t)|v(t)|µ−1v(t), a(t) = e2t

S
, S > 0, b(t) = t2 and one can obtain the

similar conclusion by verifying the conditions as stated as in the Corollary 3.2.

5. CONCLUSION

In this article, we have obtained some new sufficient conditions for the bound-
edness of nonoscillatory solutions of ψ - Hilfer fractional partial differential
equations which extend, generalize and give a broad outlook of known results
in the existing literature.
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