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EXTORIAL FUNCTION AND ITS PROPERTIES IN DISCRETE CALCULUS

S. JOHN BORG1, T. SATHINATHAN, AND G. BRITTO ANTONY XAVIER

ABSTRACT. In this paper, by developing certain properties of the newly defined
extorial function, we arrive solution of higher order difference equation with
constant coefficients using the extorial function in discrete calculus. Suitable
examples are inserted to validate our finding.

1. INTRODUCTION

The difference of two successive values of some sequence of numbers or func-
tion is the definition of the ∆. This concept is developed by the difference
operator:

∆u(k) = u(k + 1)− u(k), where k ∈ R.

The applications of difference operator and difference equations have been de-
veloped and applied many of the areas such as Astrology, Engineering, Weather
proofing and Artificial intelligence etc. The generalized difference operator ∆`,
and its properties have been derived. Authors in [2–4] have established inverse
difference operator, generalized version of Lebinitz theorem, Newtons formula,
summation of consecutive integers, Binomial theorem etc. In this paper, we
apply theory of extorial function to obtain solution of higher order `-difference
equation with constant coefficients

Foe a positive integer ‘n’ and a real `, the factorial polynomial is defined as
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K
(n)
` =

n−1∏
r=0

(k−r`). This factorial polynomial is used to define new extorial func-

tion. This extorial function is obtained by replacing polynomials into factorial
polynomials in the expansion of exponential functions [4]. This extorial func-
tion satisfies the higher order difference equation of the form ∆m

` u(k) = v(k)

and linear difference equation with constant coefficients.

2. BASIC CONCEPT OF DELTA OPERATOR

In this section we present basic concept of Delta operator, which will be
used in the subsequent sections.

Definition 2.1. [1] Let ` 6= 0 be any real and u(k) be any real valued function and
c is constant. Then, the generalized difference operator on u(k) defined as

(2.1) ∆`u(k) = u(k + `)− u(k).

If ∆`v(k) = u(k), then

(2.2) v(k) = ∆−1` u(k) + c.

For example, if u(k) = 2ek + k, then (2.1) becomes

∆`u(k) = ∆`(2e
k + k) = 2(e(k+`) + k + `)− 2(ek + k).

The generalized nth order delta operator on the function u(k) is given by
∆n
` u(k) = ∆`(∆

n−1
` u(k)).

Definition 2.2. The generalized polynomial factorial is defined as

(2.3) k
(n)
` = k(k − `)(k − 2`) · · · (k − (n− 1)`).

Lemma 2.3. We obtain the following identities easily using (2.1) and (2.2). For a
fixed n ∈ N and k ∈ R, we have

(i) ∆`k
(n)
` = n`k

(n−1)
` ,

(ii) ∆r
`k

(n)
` = `kn(n− 1)(n− 2) · · · (n− (r − 1))k

(n−r)
` ,

(iii) ∆n
` k

(n)
` = n!`n,

(iv) ∆`
1

k
(n)
`

=
−n`

(k + `)
(n+1)
`

,

(v) ∆−`
1

k
(n)
`

=
n`

k
(n+1)
`

.
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Lemma 2.4. [1] If `, n ∈ N and k is positive, then we have

(2.4) ∆−1` k
(n)
` =

k
(n+1)
`

`(n + 1)
+ c.

3. THE ` - EXTORIAL FUNCTION

The newly defined `-Extorial function is arrived by replacing the polynomial
kn by polynomial factorial function k

(n)
` in the exponential function ek. The

formal definition of extorial function is given below.

Definition 3.1. The `-extorial function denoted as e(k(n)
` ) is defined as

(3.1) e(k
(n)
` ) = 1 +

k
(n)
`

1!
+

k
(2n)
`

2!
+

k
(3n)
`

3!
+ · · ·+∞,

where |`| ≤ 1 and n, k ∈ R.

Lemma 3.2. [4] If |`| ≤ 1 and k real variable then the following holds.
(i) e(k

(1)
0 )=ek,

(ii) e((−k)
(1)
1 ) = −∞,

(iii) e(k−1(1)) =∞,

(iv) e((−k)
(1)
` ) = 1−

k
(1)
−`

1!
+

k
(2)
−`

2!
−

k
(3)
−`

3!
+ · · ·+∞,

(v) e((−k)
(1)
−`) = 1− k

(1)
`

1!
+

k
(2)
`

2!
− k

(3)
`

3!
+ · · ·+∞,

(vi) ∆`e(k
(1)
` ) = `e(k

(1)
` ),

(vii) ∆n
` e(k

(n)
` ) = `ne(k

(1)
` ).

Lemma 3.3. [4] Let k be the multiple of `. Then e(k
(1)
` ) can be expressed as finite

series such that e(k(1)
` ) =

a∑
r=0

k
(r)
`

r!
.

Lemma 3.4. [4] For any ` ∈ N, e(−`)(1)(−`) = 1− `.

Lemma 3.5. [4] For k1, k2 ∈ R and ` ∈ (0, 1), we have

(3.2) e(k1 + k2)
(1)
` = e(k1)

(1)
` e(k2)

(1)
` .

Definition 3.6. If k(rn)
` 6= 0 for n > 0 and r ∈ N, then the negative index extorial

function is defind as

(3.3) e(k
(−n)
` ) = 1 +

1

1!

1

k
(n)
`

+
1

2!

1

k
(2n)
`

+
1

3!

1

k
(3n)
`

+ · · ·∞.
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Remark 3.7.
(i) e(1

(−1)
−1 ) =

∞∑
r=0

1

(r!)2
,

(ii) e(−1
(−1)
1 ) =

∞∑
r=0

(−1)r
1

(r!)2
,

(iii) e((mk)
(1)
(m`)) = 1 +

(mk)
(1)
(m`)

1!
+

(mk)
(2)
(m`)

2!
+

(mk)
(3)
(m`)

3!
+ · · ·+∞.

Lemma 3.8. Let k(rn)
` 6= 0, where n ∈ N, |`| < 1 and k

(−n)
` = 1

k
(n)
`

. Then,

(3.4) ∆`e(k
(−n)
` ) =

−n`
(k + `)

(n+1)
`

e((k − n`)
(−n)
` ).

Proof. From (3.3),

e(k
(−n)
` ) = 1 +

1

1!

1

k
(n)
`

+
1

2!

1

k
(2n)
`

+
1

3!

1

k
(3n)
`

+ · · ·+∞

∆`(e(k
(−n)
` )) = ∆`(1 +

1

1!

1

k
(n)
`

+
1

2!

1

k
(2n)
`

+
1

3!

1

k
(3n)
`

+ · · ·+∞)

= (1− 1) + ∆`
1

k
(n)
`

+ ∆`
1

2!

1

k
(2n)
`

+ ∆`
1

3!

1

k
(3n)
`

+ · · ·

=
1

1!

−n`
(k + `)

(n+1)
`

+
1

2!

−2n`

(k + `)
(2n+1)
`

+
1

3!

−3n`

(k + `)
(3n+1)
`

+ · · ·

=
−n`

(k + `)
(n+1)
`

(
1 +

1

1!

1

(k − n`)
(n)
`

+
1

2!

1

(k − n`)
(2n)
`

+ · · ·

)
,

which gives (3.4). �

Lemma 3.9. For any positive k and ` ∈ N, we have

e(−k(−1)
` ) = 1− 1

1!

1

k
(−1)
`

+
1

2!

1

k
(−2)
`

− 1

3!

1

−k(−3)
`

+ · · ·∞.

The proof follows from the definition of extorial function.

Definition 3.10. For ` ∈ (−1, 1) and k ∈ R, the nth order `-extorial function
denoted as en(k`) is defined as

(3.5) en(k`) = 1 +
k
(n)
`

n!
+

k
(2n)
`

(2n)!
+

k
(3n)
`

(3n)!
+ · · ·+∞.

From the definition extorial function, we obtain following lemma.
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Lemma 3.11. For any real k and `, n ∈ N, then

(i) en(−k`) =


en(k(−`)) if n is even

1−
k
(n)
(−`)

n!
+

k
(2n)
(−`)

(2n)!
−

k
(3n)
(−`)

(3n)!
+ · · · if n is odd

;

(ii) en(−k(−`)) =


en(k(`)) if n is even

1− (k)
(n)
`

n!
+

(k)
(2n)
`

2n!
− (k)

(3n)
`

3n!
+ · · · if n is odd

.

Lemma 3.12. Let k ∈ R and n, ` ∈ N. Then, we have

∆`en(k`) = `

∞∑
m=1

k
(mn−1)
`

(mn− 1)!
, nm 6= 1.

Proof. We shall prove this by induction method

e2(k`) = 1 +
k
(2)
`

2!
+

k
(4)
`

4!
+

k
(6)
`

6!
+ · · ·+∞

∆`e2(k`) = ∆`
k
(2)
`

2!
+ ∆`

k
(4)
`

4!
+ ∆`

k
(6)
`

6!
+ · · ·+∞ = `

[
k
(1)
`

1!
+

k
(3)
`

3!
+

k
(5)
`

5!
+ · · ·

]

e3(k`) = 1 +
k
(3)
`

3!
+

k
(6)
`

6!
+

k
(9)
`

9!
+ · · ·+∞

∆`e3(k`) = ∆`
k
(3)
`

3!
+ ∆`

k
(6)
`

6!
+ ∆`

k
(9)
`

9!
+ · · ·+∞ = `

[
k
(2)
`

2!
+

k
(5)
`

5!
+

k
(8)
`

8!
+ · · ·

]
In general, we find

∆`en(k`) = `

[
k
(n−1)
`

(n− 1)!
+

k
(2n−1)
`

(2n− 1)!
+

k
(3n−1)
`

(3n− 1)!
+ · · ·

]
= `

∞∑
m=1

k
(mn−1)
`

(mn− 1)!
. �

Lemma 3.13. For any positive integer m, we have ∆m
` em(k`) = `mem(k`).

Proof.

∆`e1(k`) = 0 + ∆`
k
(1)
`

1!
+ ∆`

k
(2)
`

2!
+ ∆`

k
(3)
`

3!
+ · · · = `e1(k`).

∆`e2(k`) = 0 + ∆`
k
(2)
`

2!
+ ∆`

k
(4)
`

4!
+ ∆`

k
(6)
`

6!
+ · · · = 2`k`(1)

2!
+

4`k`(3)

4!
+

6`k`(5)

6!
+ · · ·

∆2
`e2(k`) =

2`(`k
(0)
` )

2!
+

4`(3`k
(2)
` )

4!
+

6`(5`k
(4)
` )

6!
+ · · · = `2e2(k`),

which yields ∆m
` em(k`) = `mem(k`). �

Lemma 3.14. For positive m and real k, we have ∆
(−m)
` em(k`) =

em(k`)

`m
, ` ∈ N.
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Proof. From Lemma 3.13, we find ∆m
` em(k`) = `mem(k`). Taking ∆−m` on both

sides, we get ∆−m` (∆m
` em(k`)) = ∆−m` (`mem(k`)), which gives ∆

(−m)
` em(k`) =

em(k`)

`m
. �

Definition 3.15. For |`| < 1, the negative order extorial function for ` ∈ (−1, 1)

is defined as

(3.6) e(−n)(k`) = 1 +
1

n!

1

k
(n)
`

+
1

(2n)!

1

k
(2n)
`

+
1

(3n)!

1

k
(3n)
`

+ · · ·+∞.

Lemma 3.16. For ` ∈ (−1, 1) and positive k, we have

∆`e(−n)(k`) = −`
[ 1

(n− 1)!

1

(k + `)
(n+1)
`

+
1

(2n− 1)!

1

(k + `)
(2n+1)
`

+
1

(3n− 1)!

1

(k + `)
(3n+1)
`

+ · · ·
]

Proof. Putting n = 1 in (3.6), we get

e(−1)(k`) = 1 +
1

1!

1

k
(1)
`

+
1

2!

1

k
(2)
`

+
1

3!

1

k
(3)
`

+ · · ·+∞

∆`e(−1)(k`) = 1 + ∆`
1

1!

1

k
(1)
`

+ ∆`
1

2!

1

k
(2)
`

+ ∆`
1

3!

1

k
(3)
`

+ · · ·+∞

= −`

[
1

(k + `)
(2)
`

+
1

1!

1

(k + `)
(3)
`

+
1

2!

1

(k + `)
(4)
`

+ · · ·

]
.

Putting n = 2 in (3.6), we get

e(−2)(k`) = 1 +
1

2!

1

k
(2)
`

+
1

4!

1

k
(4)
`

+
1

6!

1

k
(6)
`

+ · · ·+∞

∆`e(−2)(k`) = 1 + ∆`
1

2!

1

k
(2)
`

+ ∆`
1

4!

1

k
(4)
`

+ ∆`
1

6!

1

k
(6)
`

+ · · ·+∞

= −`

[
1

1!

1

(k + `)
(3)
`

+
1

3!

1

(k + `)
(5)
`

+
1

5!

1

(k + `)
(7)
`

+ · · ·

]
.

Putting n = 3 in (3.6), we get

e(−3)(k`) = 1 +
1

3!

1

k
(3)
`

+
1

6!

1

k
(6)
`

+
1

9!

1

k
(9)
`

+ · · ·+∞

∆`e(−3)(k`) = 1 + ∆`
1

3!

1

k
(3)
`

+ ∆`
1

6!

1

k
(6)
`

+ ∆`
1

9!

1

k
(9)
`

+ · · ·+∞

= −`

[
1

2!

1

(k + `)
(4)
`

+
1

5!

1

(k + `)
(7)
`

+
1

8!

1

(k + `)
(10)
`

+ · · ·

]
In general,
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∆`e(−n)(k`) = −`
[ 1

(n− 1)!

1

(k + `)
(n+1)
`

+
1

(2n− 1)!

1

(k + `)
(2n+1)
`

+
1

(3n− 1)!

1

(k + `)
(3n+1)
`

+ · · ·
]

�

4. EXTORIAL TYPE SOLUTION OF DIFFERENCE EQUATION

In this section, we obtain extorial type solutions of higher order linear `-
difference equations with constant coefficients.

Consider the nth order linear difference equation

(4.1)
(
an

∆n
`

`n
+ an−1

∆n−1
`

`n−1
+ · · ·+ a0

)
u(k) = e1(tk)t`,

where a′is for i = 1, 2, 3, ..., n are constants. Now we consider homogenous
equation

(4.2)
(
an

∆n
`

`n
+ an−1

∆n−1
`

`n−1
+ · · ·+ a0

)
u(k) = 0.

Assume that u(k) = e1((mk)(m`) as solution of (4.2). Then we get
(4.3)(

an
∆n
` e1((mk)(m`)

`n
+ an−1

∆n−1
` e1((mk)(m`)

`n−1
+ · · ·+ a0e1((mk)(m`)

)
u(k) = 0.

Now ∆`e1(mk)(m`) = m`e1(mk)(m`), ∆2
`e1(mk)(m`) = (m`)2e1(mk)(m`). In gen-

eral, ∆n
` e1(mk)(m`) = (m`)ne1(mk)(m`). Substituting the values in (4.3), we get

an
`n

(m`)ne1(mk)m` +
an1

`n−1
(m`)n−1e1(mk)m` + · · ·+ a0e1(mk)m` = 0,

which gives

(4.4)
(an
`n

(m`)n +
an1

`n−1
(m`)n−1 + · · ·+ a0

)
= 0.

The auxiliary equation for (4.4) is obtained as

(4.5) anm
n + an−1m

n−1 + · · ·+ a0 = 0.

Therefore, suppose that m is a root of (4.5), e1(mk)(m`) is solution of (4.2). To
find particular solution, since

∆`e1(tk)t` = e1(tk)(t`)(∆`e1(tk)(t`) − 1),∆2
`e1(tk)(t`) = e1(tk)(t`)(∆`e1(tk)(t`) − 1)2,
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and in general, ∆n
` e1(tk)(t`) = e1(tk)(t`)(∆`e1(tk)(t`) − 1)n, we get[

an∆n
` + an−1∆

n−1
` + · · ·+ a0

]{
e1(tk)(t`)

ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0

}
= e1(tk)(t`).

Hence the particular solution of (4.1) is obtained as

u(k) =
e1(tk)(t`)

ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0
.

Case 1 : Suppose zeros are real and different,then the complementary function
for (4.1) is u(k) = A1e1(m1k)(m1`)+A2e1(m2k)(m2`)+ · · ·+Ane1(m2k)(mn`), where
Ai are are constants, for all i=0,1,2,· · ·n. Therefore the general solution of (4.1)
is

u(k) =
[
A1e1(m1k)(m1`) + A2e1(m2k)(m2`) + · · ·+ Ane1(mnk)(m`)

]
+

e1(tk)(t`)
ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0

.
(4.6)

Case 2 : Suppose the roots are real and same then the general solution of (4.1)
is

u(k) =
[
An + An−1(mk)

(n−1)
(m`) + An−2(mk)

(n−2)
(m`) + · · ·+ A1(mk)(m`)(1)

]
· e1(mk)(m`) +

e1(tk)(t`)
ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0

.
(4.7)

The following example illustration (4.6) and (4.7).

Example 4.1. Consider the linear homogeneous difference equation

(4.8)
(

∆2
`

`2
− 4

∆`

`
+ 3

)
u(k) = 0.

The auxiliary equation is m2 − 4m + 3 = (m− 1)(m− 3) = 0. Therefore roots are
m1 = 1 and m2 = 3 and (4.8) has a solution. From case 1:

(4.9) u(k) = Ae1((k)`) + Be1((3k)(3`)).

Example 4.2. Consider the 3rd order linear non-homogeneous difference equation

(4.10)
∆3
`u(k)

`3
− 3

∆2
`u(k)

`2
+ 3

∆`u(k)

`
− u(k) = e1(tk)t`.
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The auxilary equation of (4.10) is given by

m3 − 3m2 + 3m− 1 = (m− 1)3 = 0.

So roots are m = (1, 1, 1) that is real and same. Therefore the general function is

u(k) =
[
A + B(k)

(1)
` + C(k)

(ν)
`

]
e1(k`)

+
e1(tk)(t`)

ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0
.

5. CONCLUSION

The `-extorial function has played an extra ordinary role in the field of differ-
ence equation. The `-extorial function and its derivations are discussed through
the solution of nth order difference equation. Here, we derived solutions for
the integer order difference equation. This research work may be extended to
functional order difference equations Discrete Fractional Calculus.
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