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STABILITY OF T-S FUZZY MIXED DELAYED NEURAL NETWORKS WITH
MARKOVIAN JUMPING PARAMETERS THROUGH RELIABLE SAMPLED

DATA CONTROL

D. AJAY1 AND R. SUGUMAR

ABSTRACT. The point of this paper is to nourish of the issue of Takagi-Sugeno
(T-S) fuzzy neural systems with jumping parameters. By employing the reli-
able sampled-data control along with suitable Lyapunov-Krasovskii functional,
bottomless stipulation are inferred to demonstrate that the tended to neural sys-
tems is stable. The obtained conditions are surrounded as LMIs. The controller
gain matrix is reaped by understanding the LMIs utilizing the notable numerical
MATLAB programming. Terminally, numerical example is introduced to exhibit
the viability of the conceptual outcomes.

1. INTRODUCTION

It is well known that, neural systems have gotten substantially more consid-
eration because of a wide applications, for example, signal handling, target fol-
lowing, picture preparing, cooperative memory, design acknowledgment, static
picture preparing, advancement issues, power frameworks, money, equal pro-
cessing, mechanics of structures, materials, keen reception apparatus clusters
and other logical regions [1–3]. In any case, in numerous physical and organic
wonders the pace of variety in the framework state relies upon the antecedent
states. This trademark is known as a deferral (or a time delay) and along these

1corresponding author
2010 Mathematics Subject Classification. 93E15.
Key words and phrases. Takagi-Sugeno (T-S) fuzzy neural network, reliable, sampled-data

control, Markovian jumping parameters (MJP), linear matrix inequalities (LMIs).
6277



6278 D. AJAY AND R. SUGUMAR

lines a framework with a time delay is known as a time delay framework. As
of late, the stability of neural systems has gotten a lot of consideration regard-
ing diminishing the time delays in both hypothetical and useful applications. In
this manner, extensive endeavor has been committed to dissecting the stability
of neural systems with time delays can be grouped into two types namely de-
lay dependent and delay independent. Thusly delay-dependent stability criteria
are more commonly, less traditionalist than delay independent ones particularly
when it comes to scale of the deferral is little. The stability of neural networks
with delay are examined by numerous researchers in [4–6].

Fuzzy systems as the (T-S) model have pulled in rapidly creating eagerness
for late years. T-S fuzzy systems are nonlinear structures delineated by a great
deal of IF-THEN rules. It has been demonstrated that the T-S model procedure
can give an effective strategy to address complex nonlinear structures by some
clear close by direct one of a kind system with their phonetic delineation. Some
nonlinear powerful frameworks can be approximated by the general fuzzy direct
T-S models with the ultimate objective of trustworthiness examination. Initially,
Tanaka and his accomplice have given a satisfactory condition to the quadric
stability in the T-S fuzzy frameworks in the felling of Lyapunov in by consider-
ing a Lyapunov capacity of sub-fuzzy frameworks. In the light of the foregoing,
several creators have stretch out the standard fuzzy models to conceded the de-
ferred neural systems with time fluctuating delays and have decided unfaltering
quality guidelines [7–9].

From another perspective, steadfastness and execution of different dynamical
structures are tremendously influenced by the unexpected variation occurs in
the systems model and its boundaries. Because of the occasion of this variation,
dynamical structure model will give a couple of difficulties in their display like
any faltering, abrupt condition variation, slow and dreary appearing intercon-
nection dissatisfactions and besides may incite the dissimilarity in conspicuous
cases. To stand up to these conditions, Markovian jump structures is used and
it accord a suitable out-turn for the system model which are impacted by arbi-
trary trading conduct. The most basic assessment on Markovian jump structure
is to expect that the data on variation probabilities is all around familiar. Con-
sidering, in different authentic structures, the variation probability of Markov
bouncing may not be quantifiable precisely, or possibly just barely any bit of the
variation probabilities is attainable. Along these lines, it is integral to center
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such wide Markovian jump structures having genuinely well known variation
probabilities.

The most significant properties of control frameworks is solidness, by ethi-
calness of there is no functional applications for unsteady frameworks. On a
very basic level, that each control framework is certainly steady and afterward
different properties can be examined. By righteousness of the developing inno-
vation of computerized control frameworks, a few flaws are entered that can be
from actuators and sensors. A reliable control framework secures the ability to
hold the framework disappointments normally and keeps up that the shut cir-
cle framework accomplishes dependability. Steadiness investigation of reliable
control for neural network with time differing delays is inspected in [10–14].
Because of the quick development of innovation, controllers turned out to be
generally, by and sampled data system turns into an examined information
framework in which the control signals are in consistent at the hour of testing
period and afterward it will change at the inspecting time which prompts the
control signals are in stepwise, which implies discontinuities exists and it gath-
ers the dynamical frameworks in entangled position. Besides, dependability and
adjustment of framework with sampled data control is explored in [15–17].

Motivated by the ahead deliberations, utilization of both reliable and sampled
data control for the stability of mixed delay neural networks is not yet fully
studied. So this encourage me to focus on the stability of mixed delay neural
networks using reliable control with actuators failures and sampled data control.
The main highlights of this paper are given below:

• The main novelty of this paper is to discuss the stability analysis of mixed
delayed neural network with T-S fuzzy concept.
• Reliable sampled data control is designed to achieve stability.
• Suitable LKF with integral terms are employed and it’s derived by known

integral inequalities.
• Finally numerical example is given to analyze the surety of the obtained

results.

This paper is organised as follows: The problem description and some useful
assumptions, definitions and lemmas are given in Section 2. In Section 3, the
main part of this paper i.e. the main results are given through Theorem. A nu-
merical example is fathomed to exhibit the sureness of the theoretical upshot in
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Section 4. Eventually, a conclusion part is given in Section 5.

Notations: The notations mentioned below are used throughout the paper.

Rn n dimensional Euclidean space
Rn×m set of n×m matrices
∗ symmetric term
AT transpose of A
A−1 inverse of A
I identity matrix

X > 0 real symmetric positive definite matrix
|| · || Euclidean norm

2. PROBLEM DESCRIPTION AND PRELIMINARIES

Consider the following neural networks with mixed delays and Markovian
jumping parameters,

Ṗ(ť) = −À(η(ť))P(ť) + à(η(ť))f(P(ť))

+ Â(η(ť))f(P(ť− ň(ť))) + A(η(ť))

∫ ť

ť−ň(ť)

f(P(s))ds+ uF (ť),

where P(ť) ∈ Rm is state vector of network at time ť, f(P(ť)) is the neuron
activation function at time ť, uF (ť) is the control input with actuator failures,
À(η(ť)), à(η(ť), Â(η(ť))), A(η(ť)) are known constant matrices with appropriate
dimensions.

0 ≤ ň(ť) ≤ ň, ň̇(ť) ≤ ρ

where ň and ρ are constants.
η(ť)(ť ≥ 0) is Markovian process from S with Π , Πpq given by

Pr(η(ť + ∆(ť)) = q|η(ť) = p) =

{
Πpq∆(ť) + o(∆(ť)), if q 6= p,

1 + Πpq∆(ť) + o(∆(ť)), if q = p,

where ∆(ť) > 0, lim∆(ť)→0
o(∆(ť))

∆(ť) = 0 and Πpq ≥ 0 from mode p at time ť to mode
q at time ť + ∆(ť) if p 6= q and Πpp = −

∑s
q=1,q 6=p Πpq,∀p ∈ S,S = {1, 2, . . . , s}.
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Plant rule: IF ωj(ť) is Nij for j =, 2, ..., p THEN

Ṗ(ť) = −Ài(η(ť))P(ť) + ài(η(ť))f(P(ť)) + Âi(η(ť))

f(P(ť− ň(ť))) + Ai(η(ť))

∫ ť

ť−ň(ť)

f(P(s))ds+ uF (ť), i = 1, 2, ...k(2.1)

Using fuzzy inference method, the system (2.1) can be written as

Ṗ(ť) =
k∑
i=1

hiω(ť)[−Ài(η(ť))P(ť) + ài(η(ť))f(P(ť)) + Âi(η(ť))

f(P(ť− ň(ť))) + Ai(η(ť))

∫ ť

ť−ň(ť)

f(P(s))ds+ uF (ť)],(2.2)

where ω(ť) = [ω1(ť), ω2(ť), ..., ωp(ť)] and hiω(ť) = µiω(ť)∑k
i=1 µiω(ť)

, µiω(ť) = Πp
j=1Nijωj(ť).

Nijωj(ť) is degree of the membership of ωj(ť) in Nij.

In this paper, we assume that µiω(ť) ≥ 0,
∑k

i=1 µiω(ť) > 0, ∀ť, hiω(ť) ≥
0, for i = 1, 2, .., k and

∑k
i=1 µiω(ť) > 0, ∀ť, therefore hiω(ť) ≥ 0 for i and∑k

i=1 hiω(ť) = 1.

Control rule: If ωj(ť) is Nij for j = 1, 2, ..., p then

u(ť) = Ki(η(ť))P(ť)

where Ki (i = 1, 2, ..., k) denote the control gain matrix.

Nowadays most of the practical systems are controlled by digital

u(ť) = u(ťk) = Ki(η(ť))P(ťk)

where ťk is the upper limit of k-th sample. Further, by denoting h(ť) = ť − ťk
and ťk ≤ h̄ can be written as

u(ť) = u(ťk) = Ki(η(ť))P(ť− h(ť)).

Moreover it is assume that 0 ≤ h(ť) ≤ h̄ with ˙h(ť) = 1 for ť 6= ťk. Also we choose
the reliable control input in the following form

uF (ť) = Gu(ť)
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Then the output of the fuzzy reliable sampled data controller expressed in the
following form:

uF (ť) =
x∑
j=1

hj(ω(ť))GKjη(ť)P(ť− h(ť))(2.3)

Combining (2.2) with (2.3) we obtain the following closed loop T − S fuzzy
system as:

Ṗ(ť) =
k∑
i=1

hiω(ť)[−Ài(η(ť))P(ť) + ài(η(ť))f(P(ť)) + Âi(η(ť))

f(P(ť− ň(ť))) + Ai(η(ť))

∫ ť

ť−ň(ť)

f(P(s))ds+ GKj(η(ť))P(ť− h(ť))].

Simply we mention À(η(ť)) as Àp, à(η(ť)) as àp, Âη(ť) as Âp and A(η(ť)) as Ap.

Ṗ(ť) =
k∑
i=1

hiω(ť)[−ÀipP(ť) + àipf(P(ť)) + Âip

f(P(ť− ň(ť))) + Aip

∫ t

ť−ň(t)

f(P(s))ds + GKjpP(ť− h(ť))](2.4)

Assumption 2.1. [18] For any j ∈ 1, 2, ..., n, fj(0) = 0 and there exist constants
F−j and F+

j such that

F− ≤ fj(α1)− fj(α2)

α1 − α2

≤ F+ ∀ α1 6= α2.

Definition 2.1. [19] The system is said to be asymptotically stable if it is stable,
and for any ť0 ∈ Rn and any ε < 0, there exists a δa = δa(ť0, ε) > 0 such that
||xť0||c < δa implies limť→∞x(ť) = 0.

Lemma 2.1. (Jensen’s Inequality) [20] Let M ∈ Rn×n, MT = M > 0, be a
constant matrix, scalars α and β with α > β and vector b : [β, α]→ Rn, then:

−(α− β)

∫ α

β

bT (s)M b(s)ds ≤ −
(∫ α

β

b(s)ds

)T
M

(∫ α

β

b(s)ds

)
,

−(α− β)2

2

∫ α

β

∫ α

u

bT (s)M b(s)dsdu ≤ −
(∫ α

β

∫ α

u

b(s)dsdu

)T
·M
(∫ α

β

∫ α

u

b(s)dsdu

)
.
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3. MAIN RESULTS

In this section, the stability criteria for neural networks with mixed time delay
using reliable sampled data control is presented through the following theorem.

Theorem 3.1. Under Assumption 2.1, for given positive scalars ρ, ň, h the fuzzy
neural network (2.4) is asymptotically stable if there exist positive definite matrices
P1, Q1, Q2,Q3, R1, R2, S1, T1, T2, any matrix U with appropriate dimensions
such that the following linear matrix inequality hold:

[Ω]11×11 < 0,

where

Ω1,1 = Q1 +Q2 + ň2Q3 + T1 − T2 +
ň4

4
S1 −F1L, Ω1,2 = P1 −AU ,

Ω1,4 = T2, Ω1,7 = F2L, Ω2,2 = h2T2 − U − UT , Ω2,4 = GY ,

Ω2,7 = Uà, Ω2,8 = UÂ, Ω2,10 = UA, Ω3,3 = −F1S −Q1,

Ω3,8 = F2S, Ω4,4 = −2T2, Ω4,6 = T2, Ω5,5 = −Q2,

Ω6,6 = −T2 − T1, Ω7,7 = R1 + ň2R2 − L, Ω8,8 = −(1− ρ)R1 − S,

Ω9,9 = −Q3, Ω10,10 = −R2, Ω11,11 = −S1

and the values for other entities are zero. Control gain matrix is given by K =

U−1Y .

Proof. Consider a LKF as follows:

V (P(ť)) =
5∑
r=1

Vr(P(ť))

where:

V1(P(ť)) = PT (ť)P1P(ť),

V2(P(ť)) =

∫ ť

ť−ň(ť)

PT (s)Q1P(s)ds+

∫ ť

ť−ň

PT (s)Q2P(s)ds

+ ň

∫ 0

−ň

∫ ť

ť+u

PT (s)Q3P(s)dsdu,

V3(P(ť)) =

∫ ť

ť−ň(ť)

fT (P(s))R1f(P(s))ds+ ň

∫ 0

−ň

∫ ť

ť+u

fT (P(s))R2f(P(s))dsdu,
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V4(x(ť)) =
ň2

2

∫ 0

−ň

∫ 0

θ

∫ ť

ť+u

PT (s)S1P(s)dsdudθ,

V5(P(ť)) =

∫ ť

ť−h
PT (s)T1P(s)ds+ h

∫ 0

−h

∫ ť

ť+u

Ṗ
T

(s)T2Ṗ(s)dsdu.

By derivating the above Lyapunov Krasovskii-functional we get,

V̇1(P(ť)) = 2PT (ť)P1Ṗ(ť) + PT (t)
N∑
q=1

ΠpqPqP(t),(3.1)

V̇2(P(ť)) = PT (ť)[Q1 +Q2 + ň2Q3]P(ť)− (1− ρ)PT (ť− ň(ť))

Q1P(ť− ň(ť))− PT (ť− ň)Q2P(ť− ň)− ň

∫ ť

ť−ň

PT (s)Q3P(s)ds,(3.2)

V̇3(P(ť)) = fT (P(ť))[R1 + ň2R2]f(P(ť))− (1− ρ)fT (P(ť

− ň(ť)))R1f(P(ť− ň(ť)))− ň

∫ ť

ť−ň

fT (P(s))R2f(P(s))ds,(3.3)

V̇4(P(ť)) =
ň4

4
xT (ť)S1x(ť)− ň2

2

∫ 0

−ň

∫ ť

ť+θ

PT (s)S1P(s)dsdθ,(3.4)

V̇5(P(ť)) = PT (ť)T1P(ť)− PT (ť− h)T1P(ť− h)

+ h2Ṗ(ť)T2Ṗ(ť)− h
∫ ť

ť−h
Ṗ
T

(s)T2Ṗ(s)ds.(3.5)

By Lemma 2.1, we get:

− ň

∫ ť

ť−ň

PT (s)Q3P(s)ds ≤ −
(∫ ť

ť−ň(ť)

P(s)ds

)T
Q3

(∫ t

ť−ň(ť)

P(s)ds

)
,

(3.6)

− ň

∫ ť

ť−ň

fT (P(s))R2f(P(s))ds ≤ −
(∫ ť

ť−ň(ť)

f(P(s))ds

)T
R2

(∫ ť

ť−ň(ť)

f(P(s))ds

)
,

(3.7)

− ň2

2

∫ 0

−ň

∫ ť

ť+θ

PT (s)S1P(s)dsdθ ≤ −
(∫ 0

−ň

∫ ť

ť+θ

P(s)dsdθ

)T
S1

(∫ 0

−ň

∫ ť

ť+θ

P(s)dsdθ

)
.

(3.8)
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Previous inequality can be written as

−h
∫ ť

ť−h
Ṗ
T

(s)T2Ṗ(s)ds ≤ −h
∫ ť−h(ť)

ť−h
Ṗ(s)T2Ṗ(s)ds− h

∫ ť

ť−h(ť)

Ṗ(s)T2Ṗ(s)ds.

(3.9)

By applying Jensen’s inequality and then simplifying we get:

−h
∫ ť−h(ť)

ť−h
Ṗ(s)T2Ṗ(s)ds ≤ −

(∫ ť−h(ť)

ť−h
Ṗ(s)ds

)T
T2

(∫ ť−h(ť)

ť−h
Ṗ(s)ds

)
≤ −[P(ť− h(ť))− P(ť− h)]TT2[P(ť− h(ť))− P(ť− h)](3.10)

−h
∫ ť

ť−h(ť)

Ṗ(s)T2Ṗ(s)ds ≤ −
(∫ ť

ť−h(ť)

Ṗ(s)ds

)T
T2

(∫ ť

ť−h(ť)

ẋ(s)ds

)
,

≤ −[P(ť)− P(ť− h(ť))]TT2[P(ť)− P(ť− h(ť))](3.11)

For any diagonal matrices L,S, from Assumption 2.1, we get the following in-
equalities:

0 ≤

[
P(ť)

f(P(ť))

]T [
−F1L F2L
∗ −L

][
P(ť)

f(P(ť))

]
,(3.12)

0 ≤

[
P(ť− ň(ť))

f(P(ť− ň(ť)))

]T [
−F1S F2S
∗ −S

][
P(ť− ň(ť))

f(P(ť− ň(ť)))

]
.(3.13)

For any matrix U with appropriate dimensions, the following equation holds:

2Ṗ
T

(ť)U [−Ṗ
T

(ť) +
k∑
i=1

hiω(t)[−AipP(ť) + àipf(P(ť)) + Âip

f(P(ť− ň(ť))) + Aip

∫ ť

ť−ň(ť)

f(P(s))ds+ GKjpP(ť− h(ť))]] = 0.(3.14)

From the relations (3.1) - (3.14) we conclude

V̇ (P(ť)) ≤ ζT (ť)Ωζ(ť),

where ζT (ť) = [PT (ť) Ṗ
T

(ť) PT (ť − ň(ť)) PT (ť − h(ť)) PT (ť − ň) PT (ť −
h) fT (P(ť)) fT (P(ť−ň(ť)))

∫ ť
ť−ň(ť) PT (s)ds

∫ ť
ť−ň(ť) f

T (P(s))ds
∫ 0

−ň

∫ ť
ť+θ PT (s)dsdθ].

and V̇ (P(ť)) < 0. Therefore by Definition 2.1 we get that the mixed delayed neu-
ral network is asymptotically stable. This completes the proof. �
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Remark 3.1. Now consider there is no distributed delay, then equation (2.4) be-
comes:

Ṗ(ť) =
k∑
i=1

hiω(ť)[−AipP(ť) + àipf(P(ť)) + Âipf(P(ť− ň(ť))) + GKjpP(ť− h(ť))]

(3.15)

For the mixed delay neural networks (3.15), we can derive the stability conditions
from Theorem 3.1, then we have the following Corollary.

Corollary 3.1. Under Assumption 2.1, for given positive scalars ρ, ň, h the system
(3.15) is asymptotically stable if there exist positive definite matrices P1, Q1, Q2,Q3,
S1, T1, T2, any matrix U with appropriate dimensions such that the following lin-
ear matrix inequality hold:

[Ω̄]10×10 < 0,(3.16)

where

Ω̄1,1 = Q1 +Q2 + ň2Q3 + T1 − T2 +
ň4

4
S1 −F1L, Ω̄1,2 = P1 −AU ,

Ω̄1,4 = T2, Ω̄1,7 = F2L, Ω̄2,2 = h2T2 − U − UT , Ω̄2,4 = GY ,

Ω̄2,7 = Uà, Ω̄2,8 = UÂ, Ω̄3,3 = −F1S −Q1, Ω̄3,8 = F2S,

Ω̄4,4 = −2T2, Ω̄4,6 = T2, Ω̄5,5 = −Q2, Ω̄6,6 = −T2 − T1,

Ω̄7,7 = R1 + ň2R2 − L, Ω̄8,8 = −(1− ρ)R1 − S, Ω̄9,9 = −Q3,

Ω̄10,10 = −S1.

and the values for other terms are zero. Control gain matrix is given by K = U−1Y .

Proof. Consider a Lyapunov Krasovskii functional:

V1(P(ť)) = PT (ť)P1P(ť),

V2(P(ť)) =

∫ ť

ť−ň(ť)

PT (s)Q1P(s)ds+

∫ ť

ť−ň

PT (s)Q2P(s)ds

+ ň

∫ 0

−ň

∫ ť

ť+u

PT (s)Q3x(s)dsdu,

V3(P(ť)) =
ň2

2

∫ 0

−ň

∫ 0

θ

∫ ť

ť+u

PT (s)S1P(s)dsdudθ,
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V4(P(ť)) =

∫ ť

ť−h
PT (s)T1P(s)ds+ h

∫ 0

−h

∫ ť

ť+u

Ṗ
T

(s)T2Ṗ(s)dsdu.

Using the same procedure as in Theorem 3.1, we get equation (3.16). This
completes the proof. �

Remark 3.2. There is no distributed delay and control, then equation (3.15) be-
comes:

Ṗ(ť) =
k∑
i=1

hiω(ť)[−AipP(ť) + àipf(P(ť)) + Âipf(P(ť− ň(ť)))](3.17)

For the mixed delay neural networks (3.17), we can derive the stability conditions
from Theorem 3.1, then we have the following Corollary.

Corollary 3.2. Under Assumption 2.1 for given positive scalars ρ, ň, h the system
(3.17) is asymptotically stable if there exist positive definite matrices P1, Q1, Q2,Q3,
R1, R2, S1, T1, T2, U with appropriate dimensions such that the following LMI
hold:

[Ω̂]8×8 < 0,(3.18)

where

Ω̂1,1 = Q1 +Q2 + ň2Q3 +
ň4

4
S1 −F1L, Ω̂1,2 = P1 −AU ,

Ω̂1,5 = F2L, Ω̂2,2 = −U − UT , Ω̂2,5 = Uà, Ω̂2,6 = UÂ,

Ω̂3,3 = −F1S −Q1, Ω̂3,6 = F2S, Ω̂4,4 = −Q2, Ω̂5,5 = −L,

Ω̂6,6 = −S, Ω̂7,7 = −Q3, Ω̂8,8 = −S1.

and the values for other terms are zero.

Proof. Consider a Lyapunov Krasovskii functional:

V1(P(ť)) = PT (ť)P1P(ť),
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V2(P(ť)) =

∫ ť

ť−ň(ť)

PT (s)Q1P(s)ds+

∫ ť

ť−ň

PT (s)Q2P(s)ds

+ ň

∫ 0

−ň

∫ ť

ť+u

PT (s)Q3P(s)dsdu,

V3(P(ť)) =
ň2

2

∫ 0

−ň

∫ 0

θ

∫ ť

ť+u

PT (s)S1P(s)dsdudθ.

Using the same procedure as in Theorem 3.1, we get equation (3.18). This
completes the proof. �

4. NUMERICAL EXAMPLES

In this section, a numerical example is provided to illustrate the efficacy of
the theoretical results. Consider a mixed delay neural network as:

Fuzzy Rule 1: If ω1 is N11 and... and ωp is N1p THEN

Ṗ(ť) = −A1pP(ť) + à1pf(P(ť)) + Â1pf(P(ť− ň(ť))) + A1p

∫ ť

ť−ň(ť)

f(P(s))ds

+ GK1pP(ť− h(ť))

Fuzzy Rule 2: If ω1 is N21 and... and ωp is N2p THEN

Ṗ(ť) = −A2pP(ť) + à2pf(P(ť)) + Â2pf(P(ť− ň(ť))) + A2p

∫ ť

ť−ň(ť)

f(P(s))ds

+ GK2pP(ť− h(ť))

By solving the LMIs in Theorem 3.1 using MATLAB tool box, the controller gain
matrix is obtained as:

K11 =

[
−2.0793 −0.080

−0.0381 −1.3074

]
,

K21 =

[
−5.0793 −0.0690

−0.0451 −7.3074

]
.
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5. CONCLUSION

In this paper, the reliable sampled data control problem for mixed delayed
fuzzy neural network is studied. By employing the integral inequality tech-
nique, and Lyapunov approach, a new set of conditions are obtained which
ensures that the fuzzy neural network is asymptotically stable for all possible
actuator failures. Particularly, the reliable sampled data control law is designed
in terms of the solution of certain linear matrix inequalities. The solvability of
the concerned problem has been expressed as the feasibility of a set of LMI. Fi-
nally, a numerical example is given to validate the effectiveness of the proposed
techniques.
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