ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.8, 6319–6326 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.8.99 Special Issue on ICMA-2020

ON FUZZY TOPOLOGICAL BRK-IDEAL

S. SIVAKUMAR, S. KOUSALYA, AND A. VADIVEL¹

ABSTRACT. In this article, the notion of fuzzy topological *BRK*-ideal of a *BRK*-algebra in a topology is introduced. Some theorems and properties of $f\tau BRKI$ are stated and proved. The epimorphic and into homomorphic inverse images of a $f\tau BRKI$ is also studied well. Also, we introduced a Cartesian product of a $f\tau BRKI$ and studied their properties.

1. INTRODUCTION

Imai and Iseki [3] subjected two classes of abstract algebras: BCK-algebras and BCI-algebras in the year of 1996. In 1983, the notion of a BCH-algebra was introduced by Hu and Li [2], which is a generalization of BCK and BCIalgebras. In 2002, a new notion B-algebra was introduced by Neggers and Kim [8]. Also a BF-algebra and BG-algebra was introduced by Walendziak [11] in 2007 and C. B. Kim and H. S. Kim [5], which is a generalization of B-algebra. In 2012, R. K. Bandaru [9] introduced BRK-algebra, which is a generalization of BCK/BCI/BCH/Q/QS/BM-algebras [4,6,7]. In [1], El-Gendy introduced the notion of fuzzy BRK-ideal of BRK-algebra. S. Sivakumar et al. introduced a topology on BRK-algebra [10] and also studied several concepts. In this present paper we introduce a new notion of $f\tau BRKI$ of a τBRK Alg. Also study some related properties in a $f\tau BRKI$. At last we introduce the Cartesian product of a $f\tau BRKI$ and their properties.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25, 08A30.

Key words and phrases. fBRK Alg, $f\tau BRK Alg$, $f\tau BRKI$.

2. PRELIMINARIES

Definition 2.1. [9] A BRK-algebra (briefly, BRK Alg) $(I, \star, 0)$ is a non-empty set I with a constant 0 and a binary operation \star satisfying the following axioms:

(2.1) $(BRK_1) i_1 \star 0 = i_1,$

(2.2)
$$(BRK_2) (i_1 \star i_2) \star i_1 = 0 \star i_2$$

for any $i_1, i_2 \in I$. In a *BRK* Alg I, \leq a partially ordered relation can be defined by $i_1 \leq i_2$ iff $i_1 \star i_2 = 0$.

Definition 2.2. [10] Let $(I, \star, 0)$ be a BRK Alg and τ a topology on I. Then $I = (I, \star, 0, \tau)$ is called a topological BRK Alg (briefly, τBRK Alg), if " \star " is continuous or equivalently, for any $m, n \in X$ and $\forall O$ open set of $m \star n$, \exists two open sets M and N respectively, such that $M \star N$ is a subset of O.

Definition 2.3. [10] Let I be a τBRK Alg and D be a subset of I, then D is called a τBRK -ideal (briefly, τBRK I) of I, if for any $i_{11}, i_{22} \in I$:

(i) $0 \in D$, (ii) $0 \star (i_{11} \star i_{22}) \in D$ and $0 \star i_{22} \in D$ imply $i_{11}, i_{22} \in I$.

Definition 2.4. [1] Let I be a set. A function $\mu_I : I \to [0, 1]$ where μ_I a fuzzy set in I.

Definition 2.5. [1] Let $(I, \star, 0)$ be a BRK Alg. A fuzzy set μ_I in I is called a fuzzy BRK-ideal (briefly, fBRKI) of I if

$$(BRKFI_1) \ \mu_I(0) \ge \mu_I(i_1),$$

 $(BRKFI_2) \mu_I(0 \star i_1) \ge \min\{\mu_I(0 \star (i_1 \star i_2)), \mu_I(0 \star i_2)\}, \text{ for all } i_1, i_2 \in I.$

3. Fuzzy τBRK -Ideal

Definition 3.1. Let $(I, \star, 0, \tau)$ be a τBRK Alg. A fuzzy set μ_I in I is called an fuzzy topological BRK-ideal (briefly, $f\tau BRKI$) of I if

(3.1)
$$\mu_I(0) \ge \mu_I(i_1),$$

(3.2)
$$\mu_I(0 \star i_1) \ge \min\{\mu_I(0 \star (i_1 \star i_2)), \mu_I(0 \star i_2)\}, \text{ for all } i_1, i_2 \in I.$$

Definition 3.2. Let $(I, \star, 0, \tau)$ be a τBRK Alg. A fuzzy set μ_I in I is called an Anti fuzzy topological BRK-ideal (briefly, $Af\tau BRK I$) of I if

(3.3) $\mu_I(0) \le \mu_I(i_1),$

(3.4)
$$\mu_I(0 \star i_1) \leq \max\{\mu_I(0 \star (i_1 \star i_2)), \mu_I(0 \star i_2)\}, \text{ for all } i_1, i_2 \in I.$$

Example 1. Let $(I = \{0, a_1, b_1, c_1\}, \star, 0)$ be a *BRK* Alg defined by

*	0	a_1	b_1	c_1
0	0	0	b_1	b_1
a_1	a_1	0	b_1	b_1
b_1	b_1	b_1	0	0
c_1	c_1	c_1	a_1	0

Define a topology $\tau = \{\phi, I, \{b_1\}, \{c_1\}, \{b_1, c_1\}, \{0, a_1\}, \{0, a_1, b_1\}, \{0, a_1, c_1\}\}$ is a τBRK Alg. Now define $\mu_I : I \to [0, 1]$ by $\mu_I(0) = K_1$, $\mu_I(a_1) = \mu_I(b_1) = \mu_I(c_1) = K_2$, where $K_1, K_2 \in [0, 1]$ with $K_1 > K_2$ gives that μ_I is an $f \tau BRKI$.

Proposition 3.1. Let μ_I be an $f \tau BRKI$ of τBRK Alg I and if $i_1 \geq i_2$, then $\mu_I(0 \star i_1) \geq \mu_I(0 \star i_2), \forall i_1, i_2 \in I$.

Proof. Let μ_I be an $f \tau BRKI$ of a τBRK Alg I. For any $i_1, i_2 \in I$ such that $i_1 \geq i_2$. Since $i_1 \geq i_2$, then $i_1 \star i_2 = 0$.

$$\mu_I(0 \star i_1) \ge \min\{\mu_I(0 \star (i_1 \star i_2)), \mu_I(0 \star i_2)\} \\= \min\{\mu_I(0 \star 0), \mu_I(0 \star i_2)\} \\= \min\{\mu_I(0), \mu_I(0 \star i_2)\} \\= \mu_I(0 \star i_2).$$

Hence $\mu_I(0 \star i_1) \ge \mu_I(0 \star i_2)$.

Theorem 3.1. A fuzzy subset μ_I of a τBRK Alg I is a $Af\tau BRK$ I of I iff μ_I^c is an $f\tau BRKI$ of I.

Proof. Let μ_I be a $Af\tau BRK I$ of a $\tau BRK Alg I$, and let $i_1, i_2 \in I$. Then Since $\mu_I(0) \leq \mu_I(i_1)$ then

(3.5)
$$1 - \mu_I(0) \ge 1 - \mu_I(i_1)$$
$$\mu_I^c(0) \ge \mu_I^c(i_1).$$

Further,

$$\mu_I(0 \star i_1) \le \max\{\mu_I(0 \star (i_1 \star i_2)), \mu_I(0 \star i_2)\}$$

$$1 - \mu_I(0 \star i_1) \ge 1 - \max\{\mu_I(0 \star (i_1 \star i_2)), \mu_I(0 \star i_2)\}$$

$$\mu_I^c(0 \star i_1) \ge \min\{1 - \mu_I(0 \star (i_1 \star i_2)), 1 - \mu_I(0 \star i_2)\}$$

(3.6)
$$\mu_I^c(0 \star i_1) \ge \min\{\mu_I^c(0 \star (i_1 \star i_2)), \mu_I^c(0 \star i_2)\}$$

So, μ_I^c is an $f \tau BRKI$ of I.

Now let μ_I^c is an $f \tau BRKI$ of a τBRK Alg I, and let $i_3, i_4 \in I$. Then Since $\mu_I^c(0) \ge \mu_I^c(i_3)$ then

$$1 - \mu_I^c(0) \le 1 - \mu_I^c(i_3)$$

(3.7) $\mu_I(0) \le \mu_I(i_3).$

So,

$$\mu_I^c(0 \star i_3) \ge \min\{\mu_I^c(0 \star (i_3 \star i_4)), \mu_I^c(0 \star i_4)\}\$$

$$1 - \mu_I^c(0 \star i_3) \le 1 - \min\{\mu_I^c(0 \star (i_3 \star i_4)), \mu_I^c(0 \star i_4)\}\$$

$$\mu_I(0 \star i_3) \le \max\{1 - \mu_I^c(0 \star (i_3 \star i_4)), 1 - \mu_I^c(0 \star i_4)\}\$$

(3.8)
$$\mu_I(0 \star i_3) \le \max\{\mu_I(0 \star (i_3 \star i_4)), \mu_I(0 \star i_4)\}$$

Therefore, μ_I is a $Af\tau BRK I$ of a $\tau BRK Alg I$.

Theorem 3.2. Let μ_I be an $f \tau BRKI$ of τBRK Alg I. Then $I_{\mu_I} = \{i_1 \in I | \mu_I(0 \star i_1) = \mu_I(0)\}$ is a τBRK I.

Proof. Clearly $0 \in I_{\mu_I}$. Let $i_1, i_2 \in I_{\mu_I}$ be such that $(0 \star (i_1 \star i_2)) \in I_{\mu_I}$ and $0 \star i_2 \in I_{\mu_I}$. Then $\mu_I(0 \star (i_1 \star i_2)) = \mu_I(0 \star i_2) = \mu_I(0)$. It follows that

$$\mu_{I}(0 \star i_{1}) \geq \min\{\mu_{I}(0 \star (i_{1} \star i_{2})), \mu_{I}(0 \star i_{2})\} \\ \mu_{I}(0 \star i_{1}) \geq \min\{\mu_{I}(0), \mu_{I}(0)\} \\ \mu_{I}(0 \star i_{1}) \geq \mu_{I}(0).$$

So, by combining with Definition 3.1, we get that $\mu_I(0 \star i_1) = \mu_I(0)$ and hence $0 \star i_1 \in I_{\mu_I}$.

Definition 3.3. Let $(I, \star, 0, \tau)$ and $(J, \star', 0', \tau)$ be τBRK Algs. A mapping $h : I \to J$ is said to be a homomorphism of a τBRK Alg if $h(i_1 \star i_2) = h(i_1) \star' h(i_2)$, $\forall i_1, i_2 \in I$.

Definition 3.4. Let a map $h : I \to J$. If μ_I^* is a fuzzy subset of J, then the fuzzy subset defined by $\mu_I^*(h(i_1)) = \mu_I(i_1) \forall i_1 \in I$ is said to be the inverse image of μ_I^* under h.

Theorem 3.3. The epimorphic image of an $f \tau BRKI$ is also an $f \tau BRKI$.

Proof. Let $h : I \to J$ be an epimorphism of τBRK Alg's $(I, \star, 0, \tau)$ and $(J, \star', 0', \tau)$. Consider that β is an $f\tau BRKI$ of I and μ_I is the image of β under h. Let $j_1 \in J$. Then $\exists i_1 \in I$ such that $h(i_1) = j_1$. Then

$$\mu_I(j_1) = \mu_I(h(i_1)) = \beta(i_1) \le \beta(0) = \mu_I(h(0)) = \mu_I(0').$$

Let
$$i'_1, j'_1 \in J$$
. Then $\exists i_1, j_1 \in I \ni h(i_1) = i'_1 \& h(j_1) = j'_1$. It follows that
 $\mu_I(0' \star' i'_1) = \mu_I(h(0 \star i_1))$
 $= \beta(0 \star i_1) \ge \min\{\beta(0 \star (i_1 \star j_1)), \beta(0 \star j_1)\}$
 $= \min\{\mu_I(h(0 \star (i_1 \star j_1))), \mu_I(h(0 \star j_1))\}$
 $= \min\{\mu_I(h(0) \star' (h(i_1) \star' h(j_1))), \mu_I(h(0) \star' h(j_1))\}$
 $= \min\{\mu_I(0' \star' (i'_1 \star' j'_1)), \mu_I(0' \star' j'_1)\}.$

Hence μ_I is an $f \tau BRKI$ of J.

Theorem 3.4. The into homomorphic inverse image of an $f\tau BRKI$ is also an $f\tau BRKI$.

Proof. Let $h : I \to J$ be an into homomorphism of τBRK Alg's $(I, \star, 0, \tau)$, $(J, \star', 0', \tau)$. And μ_I^* is an $f\tau BRKI$ of J and μ_I is the inverse image of μ_I^* under h. By definition 3.4 we find that $\mu_I^*(h(i_1)) = \mu_I(i_1)$, for all $i_1 \in I$, since μ_I^* is an $f\tau BRKI$ of J, then $\mu_I^*(0') \ge \mu_I^*(h(i_1)) \forall i_1 \in I$.

So that (3.7) holds, since $\mu_I(0) = \mu_I^*(h(0)) = \mu_I^*(0') \ge \mu_I^*(h(i_1)) = \mu_I(i_1)$. For all $i_1, i_2 \in I$, we have

$$\mu_{I}(0 \star i_{1}) = \mu_{I}^{*}(h(0 \star i_{1})) = \mu_{I}^{*}(h(0) \star' h(i_{1}))$$

$$\geq \min\{\mu_{I}^{*}(h(0) \star' (h(i_{1}) \star' h(i_{2}))), \mu_{I}^{*}(h(0) \star' h(i_{2}))\}$$

$$= \min\{\mu_{I}^{*}(h(0 \star (i_{1} \star i_{2}))), \mu_{I}^{*}(h(0 \star i_{2}))\}$$

$$= \min\{\mu_{I}(0 \star (i_{1} \star i_{2})), \mu_{I}(0 \star i_{2})\}.$$

Hence $\mu_I(0 \star i_1) = \mu_I^*(h(0 \star i_1)) = (\mu_I^* \circ h)(0 \star i_1)$ is an $f \tau BRKI$ of I. The proof is complete.

4. Cartesian Product of $f \tau BRK$ -Ideal

Definition 4.1. A μ_I be fuzzy relation on any set I is a fuzzy subset $\mu_I : I \times I \rightarrow [0, 1]$.

Definition 4.2. Let μ_I and μ_I^* be fuzzy subsets of a set I. The Cartesian product of μ_I and μ_I^* is defined by $(\mu_I \times \mu_I^*)(i_1, j_1) = \min\{\mu_I(i_1), \mu_I^*(j_1)\} \forall i_1, j_1 \in I$.

Corollary 4.1. Let $(I, \star, 0, \tau)$ and $(J, \star, 0', \tau)$ be τBRK Alg's, we define \star on $I \times J$ by for every $(i_3, i_4), (j_3, j_4) \in I \times J$, $(i_3, i_4) \star (j_3, j_4) = (i_3 \star j_3, i_4 \star j_4)$ then $(I \times J, \star, (0, 0'), \tau)$ is a τBRK Alg.

Proof. Let $(I, \star, 0, \tau)$ and $(J, \star, 0', \tau)$ be τBRK Alg's (see Definition 3.1). For all $(i_3, i_4), (j_3, j_4) \in I \times J$, then

$$(i)-(i_3, i_4) \star (0, 0') = (i_3 \star 0, i_4 \star 0') = (i_3, i_4)$$

$$(ii)-((i_3, i_4) \star (j_3, j_4)) \star (i_3, i_4) = (i_3 \star j_3, i_4 \star j_4) \star (i_3, i_4)$$

$$= ((i_3 \star j_3) \star i_3, (i_4 \star j_4) \star i_4) = (0 \star j_3, 0' \star j_4).$$

So, $(I \times J, \star, (0, 0'), \tau)$ is a τBRK Alg.

Theorem 4.1. If μ_I and μ'_I are $f \tau BRKI's$ of τBRK Alg's I, then $\mu_I \times \mu'_I$ is an $f \tau BRKI$ of $(I \times I, \star, (0, 0'), \tau)$.

Proof. Let $i_3, i'_3 \in I \times I$. Then

$$(\mu_I \times \mu'_I)(0,0') = \min\{\mu_I(0), \mu'_I(0')\} \ge \min\{\mu_I(i_3), \mu'_I(i'_3)\} = (\mu_I \times \mu'_I)(i_3, i'_3).$$

For any $(i_3, i'_3), (i_4, i'_4) \in I \times I$ we have

$$\begin{aligned} (\mu_I \times \mu'_I)(0 \star i_3, 0' \star i'_3) &= \min\{\mu_I(0 \star i_3), \mu'_I(0' \star i'_3)\} \\ &= \min\{\min\{\mu_I(0 \star (i_3 \star i_4)), \mu_I(0 \star i_4)\}, \min\{\mu'_I(0' \star (i'_3 \star i'_4)), \mu'_I(0' \star i'_4)\}\} \\ &= \min\{\min\{\mu_I(0 \star (i_3 \star i_4)), \mu'_I(0' \star (i'_3 \star i'_4))\}, \min\{\mu_I(0 \star i_4), \beta(0' \star i'_4)\}\} \\ &= \min\{(\mu_I \times \beta)((0, 0') \star ((i_3, i'_3) \star (i_4, i'_4))), (\mu_I \times \mu'_I)((0, 0') \star (i_4, i'_4))\}. \end{aligned}$$

Hence $\mu_I \times \mu'_I$ is a $f \tau BRKI$ of $(I \times I, \star, (0, 0'), \tau)$.

6324

Definition 4.3. If ζ is a fuzzy subset of a set *I*, the strongest fuzzy relation on *I* that is a fuzzy relation on ζ is $\mu_{I_{\zeta}}$ given by $\mu_{I_{\zeta}}(i_1, i_2) = \min{\{\zeta(i_1), \zeta(i_2)\}} \forall i_1, i_2 \in I$.

Proposition 4.1. For a fuzzy subset ζ of a τBRK Alg I, let $\mu_{I_{\zeta}}$ be the strongest fuzzy relation on I. If $\mu_{I_{\zeta}}$ is an $f\tau BRKI$ of $(I \times I; \star, (0, 0))$, then $\zeta(0) \geq \zeta(i_1)$ for all $i_1 \in I$.

Proof. Since $\mu_{I_{\zeta}}$ is a $f \tau BRKI$ of $I \times I$, it follows from (3.5) that $\mu_{I_{\zeta}}(0,0) \ge \mu_{I_{\zeta}}(i_1,i_1)$. So that $\mu_{I_{\zeta}}(0,0) = \min\{\zeta(0),\zeta(0)\} \ge \max\{\zeta(i_1),\zeta(i_1)\} = \mu_{I_{\zeta}}(i_1,i_1)$. This implies that $\zeta(0) \ge \zeta(i_1)$.

Theorem 4.2. Let ζ be a fuzzy subset of τBRK Alg I and $\mu_{I_{\zeta}}$ be the strongest fuzzy relation on I. If ζ is a $f\tau BRKI$ of I then $\mu_{I_{\zeta}}$ is a $f\tau BRKI$ of $(I \times I; \star, (0, 0'), \tau)$.

Proof. Suppose that, ζ is a fuzzy subset of a $f \tau BRKI I$ and $\mu_{I_{\zeta}}$ is the strongest fuzzy relation on I. Then $\mu_{I_{\zeta}}(0,0') = \min\{\zeta(0),\zeta(0')\} \ge \min\{\zeta(i_1),\beta(j_1)\} = \mu_{I_{\zeta}}(i_1,j_1) \forall (i_1,j_1) \in I \times I$.

For all $(i_1, i'_1), (j_1, j'_2) \in I \times I$, we get that

$$\begin{split} &\mu_{I_{\zeta}}((0,0')\star(i_{1},i'_{1})) = \mu_{I_{\zeta}}(0\star i_{1},0'\star i'_{1}) = \min\{\beta(0\star i_{1}),\beta(0'\star i'_{1})\}\\ &\geq \min\{\min\{\beta(0\star(i_{1}\star j_{1})),\beta(0\star j_{1})\},\min\{\zeta(0\star(i'_{1}\star j'_{1})),\zeta(0'\star j'_{1})\}\}\\ &= \min\{\min\{\zeta(0\star(i_{1}\star j_{1})),\beta(0'\star(i'_{1}\star j'_{1}))\},\min\{\beta(0\star j_{1}),\beta(0'\star j'_{1})\}\}\\ &= \min\{\mu_{I_{\zeta}}(0\star(i_{1}\star j_{1}),0'\star(i'_{1}\star j'_{1})),\mu_{I_{\zeta}}(0\star j_{1},0'\star j'_{1})\}\\ &= \min\{\mu_{I_{\zeta}}((0,0')\star((i_{1},i'_{1})\star(j_{1},j'_{1}))),\mu_{I_{\zeta}}((0,0')\star(j_{1},j'_{1}))\}.\end{split}$$

Hence $\mu_{I_{\zeta}}$ is a $f \tau BRKI$ of $(I \times I; \star, (0, 0'), \tau)$.

5. CONCLUSION

In this paper, the $f\tau BRKI$ concept of τBRK Alg was introduced and studied their properties. The epimorphic and into homomorphic inverse images of a $f\tau BRKI$ are also discussed and studied well. The $f\tau BRKI$ of a cartesian product was also discussed in this work.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their valuable comments and helpful suggestions for improvement of the original manuscript.

S. SIVAKUMAR, S. KOUSALYA, AND A. VADIVEL

References

- [1] O.R. EL-GENDY: *Fuzzy BRK-ideal of BRK-algebra*, JP Journal of algebra, Number theory & appl, **36**(3) (2015), 231–240.
- [2] Q.P. HU, X. LI: On BCH-algebras, Mathematics Seminar Notes, 11 (1983), 313–320.
- [3] Y. IMAI, K. ISEKI: On axiom systems of propositional calculi, XIV Proceedings of the Japan Academy, **42** (1966), 19–22.
- [4] Y.B. JUN, E.H. ROH, H.S. KIM: On BH-algebras, Scientiae Mathematicae Japonica, 1(3) (1998), 347–354.
- [5] C.B. KIM, H.S. KIM: On BG-algebras, Demonstratio Mathematica, 41(3) (2008), 497– 505.
- [6] C.B. KIM, H.S. KIM: On BM-algebras, Scientiae Mathematicae Japonicae, 63(3) (2006), 421–427.
- [7] J. NEGGERS, S.S. AHN, H.S. KIM: On *Q*-algebras, International Journal of Mathematics and Mathematical Sciences, 27(12) (2001), 749–757.
- [8] J. NEGGERS, H.S. KIM: On B-algebras, Mathematica Vensik, 54 (2002), 21-29.
- [9] R. KUMAR BANDARU: On BRK-algebras, International Journal of Mathematics and Mathematical Sciences, 2012 (2012), Article ID 952654, 12 pages. https://doi.org/10.1155/2012/952654
- [10] S. SIVAKUMAR, S. KOUSALYA, R. VIKRAMA PRASAD, A. VADIVEL: Topological structures on BRK-algebras, Journal of Engineering Sciences, 10(11) (2019), 459–471.
- [11] A. WALENDZIAK: On BF-algebras, Mathematica Slovaca, 57(2) (2007), 119–128.

DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE, CHIDAMBARAM, TAMIL NADU - 608 102, INDIA.

Email address: ssk.2012@yahoo.co.in

DEPARTMENT OF MATHEMATICS, VIDYAA VIKAS COLLEGE OF ENGINEERING AND TECHNOLOGY, TIRUCHENGODE, TAMIL NADU - 637 214, INDIA.

Email address: kousalyavaasan@gmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KARUR - 639 005; DEPARTMENT OF MATHEMATICS, ANNAMALAI UNIVERSITY, ANNAMALAI NA-GAR - 608 002, INDIA.

Email address: avmaths@gmail.com