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ON FUZZY TOPOLOGICAL BRK-IDEAL
S. SIVAKUMAR, S. KOUSALYA, AND A. VADIVEL!

ABSTRACT. In this article, the notion of fuzzy topological BRK-ideal of a BRK-
algebra in a topology is introduced. Some theorems and properties of fTBRK I
are stated and proved. The epimorphic and into homomorphic inverse images
of a frBRK]I is also studied well. Also, we introduced a Cartesian product of
a fTBRKI and studied their properties.

1. INTRODUCTION

Imai and Iseki [3] subjected two classes of abstract algebras: BC K -algebras
and B(C'I-algebras in the year of 1996. In 1983, the notion of a BC H-algebra
was introduced by Hu and Li [2], which is a generalization of BCK and BC'I-
algebras. In 2002, a new notion B-algebra was introduced by Neggers and
Kim [8]. Also a BF'-algebra and B(G-algebra was introduced by Walendziak [11]
in 2007 and C. B. Kim and H. S. Kim [5], which is a generalization of B-algebra.
In 2012, R. K. Bandaru [9] introduced BRK-algebra, which is a generalization
of BCK/BCI/BCH/Q/QS/BM-algebras [4,6,7]. In [1], El-Gendy introduced
the notion of fuzzy BRK-ideal of BRK-algebra. S. Sivakumar et al. introduced
a topology on BRK-algebra [10] and also studied several concepts. In this
present paper we introduce a new notion of fTBRKI of a TBRK Alg. Also
study some related properties in a fTBRK I. At last we introduce the Cartesian
product of a frBRK I and their properties.
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2. PRELIMINARIES

Definition 2.1. [9] A BRK-algebra (briefly, BRK Alg) (I,*,0) is a non-empty
set I with a constant 0 and a binary operation * satisfying the following axioms:

(21) (BRK1> i1*0:i17

(22) (BRKQ) (il*i2>*i1 = O*ig
for any iy,is € I. Ina BRK Alg I, < a partially ordered relation can be defined
b_y 11 < 1y lﬁc’bl * 19 = 0.

Definition 2.2. [10] Let (I,*,0) be a BRK Alg and 7 a topology on I. Then
I = (I,%,0,7) is called a topological BRK Alg (briefly, TBRK Alg), if “x” is
continuous or equivalently, for any m,n € X and ¥V O open set of m xn, 3 two
open sets M and N respectively, such that M = N is a subset of O.

Definition 2.3. [10] Let I be a TBRK Alg and D be a subset of I, then D is called
a TBRK-ideal (briefly, TBRK I) of 1, if for any iy1,is € I:

(1) 0€ D,
(ZZ) 0x (ill *’i22> € D and O*iQQ eD lmply illa 199 € 1.

Definition 2.4. [1] Let I be a set. A function p; : I — [0, 1] where p; a fuzzy set
in [.

Definition 2.5. [1] Let (I,%,0) bea BRK Alg. A fuzzy set juy in I is called a fuzzy
BRK-ideal (briefly, fBRKI) of I if

(BRKFI,) pr(0) > pr(iy),

(BRKF[Q) [L](O *il) 2 mln{pJ(O * (’ll *iz)),ﬂ](o*iQ)}, fOl" all il,'ig el

3. Fuzzy TBRK-IDEAL

Definition 3.1. Let (I,*,0,7) be a TBRK Alg. A fuzzy set u; in I is called an
fuzzy topological BRK-ideal (briefly, frBRKI) of I if

(3.1 pr(0) > (i),

(3.2) pr(0xay) > min{pr(0 * (i1 *42)), ur (0% d9)}, forall iy, iy € 1.
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Definition 3.2. Let (I, x,0,7) bea TBRK Alg. A fuzzy set u; in I is called an Anti
fuzzy topological BRK-ideal (briefly, AfrBRK I) of I if

(3.3) pr(0) < pug(iy),

(34) ,UI(O *il) < max{,u[(O* (Zl *iQ)), /u(() *ig)}, fOT' all il, ig el

Example 1. Let (I = {0,ay,b1,c1},%,0) be a BRK Alg defined by
* [0 la| b |
0101]0/|b]|0Dy
arlay | 0 by | by
by | by |01 0] 0
cileileila |0
Define a topology 7 = {¢,I,{b:1},{c1},{b1,c1},{0,a:},{0,a1,01},{0,a1,c1}} is a
TBRK Alg. Now define iy : I — [0,1] by 11;(0) = Ky, py(ar) = pr(br) = pr(er) =
K, where Ky, Ky € [0, 1] with Ky > K, gives that u; is an fTBRKI.

Proposition 3.1. Let iy be an fTBRKI of TBRK Alg I and if iy > iy, then
/L[(O*il) > /,LI(O*iQ), Vil,ig el

Proof. Let yu; be an fTBRKI of a TBRK Alg I. For any i1,io € I such that
11 > 19. Since i; > iy, then i; x 15 = 0.
pr(0%d1) > min{ gy (0% (i1 *42)), pur(0xd2)}
= min{p;(0x0), u7(0 *iz)}
= min{z;(0), 1 (0 % 22)}
= (0 % dg).
Hence p7(0%d1) > pr(0 % 3s). O

Theorem 3.1. A fuzzy subset yu; of a TBRK Alg I 'isa AftBRK I of I iff u§ is
an fTBRKI of I.

Proof. Let u; be a AfrBRK I of a TBRK Alg I, and let i1,i, € I. Then Since
p1(0) < py(iy) then
1—pr(0) > 1 — pur(in)

(3.5) pi(0) = py(in).
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Further,
pr(0x7y) < max{pr(0* (i1 *d2)), r(0 % i)}
1 —pr(0%iy) > 1 —max{ur(0x (iy xi2)), ur(0x i)}
M?(O*Zl) Z IIlll’l{l — ,uI(O* (Zl *’ig)), 1— /,L[(O*/LQ)}
(3.6) p7(0%d1) = min{p7(0 x (i1 *i2)), pg(0x iz)}

So, ujisan frBRKI of 1.

Now let 1§ is an fTBRKI of a TBRK Alg I, and let i3,i4 € I. Then Since
17(0) = pi(is) then
1 —p5(0) <1 — pi(is)

3.7) 11(0) < pur(is).
So,

p7(0 % dg) > min{u7(0 % (is x ia)), p7(0 % 24) }

1 — p5(0%i3) <1 —min{uf(0x (igxiyg)), n7(0xiqg)}
pr(0%i3) < max{l — pf(0* (igxiy4)),1 — pu5(0*ig)}

(3.8) pr(0xi3) < max{pr(0* (i3 %d4)), r(0xiy)}

Therefore, p;isa AfTBRK I of a TBRK Alg I. O

Theorem 3.2. Let yi; be an fTBRKI of TBRK Alg I. Then I,, = {i; € I|pu;(0*
i1) = pr(0)} isa TBRK 1.

Proof. Clearly 0 € [,,. Let iy,io € I,, be such that (0 x (i; x i3)) € I,, and
0xiy € 1,,. Then (0 * (41 % i2)) = pr(0 % iz) = p1s(0). It follows that

M[(O * Zl) Z mln{,u](O * (Zl * ig)), [L[(O * 12)}

pr (0% i1) > min{yer(0), pr(0)}

pr(0xiv) > pur(0).

So, by combining with Definition 3.1, we get that y;(0 x ;) = p;(0) and hence
0xiy € 1. O
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Definition 3.3. Let (I, *,0,7) and (J,«',0',7) be TBRK Algs. A mapping h : I —
J is said to be a homomorphism of a TBRK Alg if h(iy * i2) = h(i1) ¥ h(iz),
Vi, ie € 1.

Definition 3.4. Let amap h : I — J. If u;* is a fuzzy subset of J, then the fuzzy
subset defined by ;" (h(i1)) = pr(i1) V iy € I is said to be the inverse image of y;*
under h.

Theorem 3.3. The epimorphic image of an fTBRKI is also an fTBRKI.

Proof. Leth : I — J be an epimorphism of TBRK Alg’s (I,x,0,7) and (J,«', 0/, 7).
Consider that g is an fTBRK of I and y; is the image of § under h. Let j; € J.
Then Ji; € I such that h(i;) = j;. Then

pr(j1) = pr(h(ir)) = B(i1) < B(0) = pr(h(0)) = pr(0").
Letd},j; € J. Then 341,75, € I 5 h(iy) =i} & h(j1) = 7. It follows that
pur(0"+"17) = pr(h(0 % ir))
= B(0x 1) > min{5(0x (i x j1)),
= min{pr (h(0* (i1 j1))), s (R(0* j1)) }
= min{p; (h(0) %' (h(ir) ¥ h(j1))), pr(R(0) %" h(j1))}
= min{p; (0" (&4 * 51)), s (0" )}
Hence yu; is an fTBRKI of J. O

BO*j1)}

Theorem 3.4. The into homomorphic inverse image of an fTBRKI is also an
frBRK]I.

Proof Let h : I — J be an into homomorphism of TBRK Alg’s (I,%,0,7),
(J,#,0,7). And u;* is an frBRKI of J and p; is the inverse image of y;*
under h. By definition 3.4 we find that p;*(h(i1)) = pr(i1), for all i, € I, since
,LL[* is an fTBRK[ of J, then /L[*(()/) > ,U,[*<h(21)> i 11 € 1.
So that (3.7) holds, since p;(0) = u*(h(0)) = pr*(0)) > pur*(h(ir)) = pr(iy).
For all 41,4, € I, we have
pr(0xiy) = pur"(h(0 % 41)) = pr*(h(0) *" h(ir))
> min{p;"(h(0) ' (h(in) ¥ h(i2))), ™ (h(0) *" h(iz)) }
= min{p;*(h(0 * (i1 xi2))), ur*(h(0 % i3))}
= min{pr(0 * (i3 x 22)), 7 (0 *iz)}.
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Hence p;(0%i1) = p*(h(0xi1)) = (u*oh)(0*iy) is an frBRKI of I. The proof
is complete. O

4. CARTESIAN PRODUCT OF frBRK-IDEAL
Definition 4.1. A u; be fuzzy relation on any set I is a fuzzy subset py : [ x I —
0, 1].
Definition 4.2. Let u; and u;* be fuzzy subsets of a set I. The Cartesian product
of py and yur* is defined by (pr x pur*) (v, j1) = min{pr (i), pr*(j1)} ¥V i1, j1 € 1.

Corollary 4.1. Let (I,%,0,7) and (J,*,0',7) be TBRK Alg’s, we define xon I x J
by for every (is,i4), (js,Ja) € I X J, (i3,i4) * (j3,Ja) = (i3 * Js, 14 * jsu) then (I X
J,*,(0,0"),7)isa TBRK Alg.

Proof. Let (I,*,0,7) and (J,x,0',7) be TBRK Alg’s (see Definition 3.1). For all
(i3,14), (J3,74) € I x J, then
(1)—(i3,32) % (0,0") = (i3 % 0,44 % 0') = (i3, a)
(1) = ((is, ia) * (J3, Ja)) * (i3, ia) = (i3 % J3, ia * ja) * (i3, %a)
= ((i3 * j3) * i3, (14 * ja) xig) = (0% j3,0" % j4).
So, (I x J,%,(0,0"),7)isa TBRK Alg. O

Theorem 4.1. If y; and p; are fTBRKI’s of TBRK Alg’s I, then pu; x p) is an
fTBRKI of (I x I,%,(0,0"),7).

Proof. Letis,i5 € [ x I. Then
(pr x p7)(0,0') = min{pr (0), g (00} = minfyer (i), pp(ds)} = (per x pp)(ds, 45).

For any (is, 1), (i4,4y) € I x I we have

(b % pi7) (0 x i3, 0 % d5) = min{pur (0 % 43), p (0 % 43) }

= min{min{y; (0 (i % i), pur (0 i) }, min{ s (0" % (i 5 7)), iy (0 % 83) } }

= min{min{y; (0 (i % ia)), (0" 5 (i % @3)) b, min{pr (05 da), B0 % @)) } }

= min{(ur X B)((0,0') x (i3, d5) * (ia, 14))), (e X ) ((0,0°) % (i, 83)) }-
Hence u; x pyisa frBRKI of (I x I,x,(0,0'),7). O



ON FUZZY TOPOLOGICAL BRK-IDEAL 6325
Definition 4.3. If ( is a fuzzy subset of a set I, the strongest fuzzy relation on [ that
is a fuzzy relation on ( is iy, given by iy (i1,12) = min{((i1), ((i2)} V i1,i € 1.

Proposition 4.1. For a fuzzy subset ¢ of a TBRK Alg I, let y;, be the strongest
fuzzy relation on I. If ;. is an frBRKI of (I x I;%,(0,0)), then ((0) > ((iy) for
all il el

Proof. Since yuy, is a frTBRKI of I x I, it follows from (3.5) that u; (0,0) >

pur (41, 41). So that 4y.(0,0) = min{¢(0),¢(0)} = max{C(i1),C(i1)} = pur (i1, 1)-
This implies that ¢(0) > ((41).
).

U
Theorem 4.2. Let ( be a fuzzy subset of TBRK Alg I and jui;, be the strongest fuzzy
relationon I. If (isa fTBRKI of I then y;, isa frBRKI of (I x I;x,(0,0'),7

Proof. Suppose that, ¢ is a fuzzy subset of a fTBRKI I and p;, is the strongest
fuzzy relation on I. Then y; (0,0") = min{¢(0),¢(0")} > min{¢(i1), B(j1)} =
pr (i, j1) ¥ (i, j1) € 1 < 1.
For all (iy,1}), (j1,75) € I x I, we get that
111,((0,0') % (i1, 17)) = pur (0% iy, 0" 47 ) = min{B(0* 1), B(0" % 41) }
> min{min{ (0 * (i1 x j1)), B(0  j1) }, min{¢ (0" * (¢4 x j1)), C(0" x j1)} }
= min{min{¢ (0 (iy * j1)), B(0"* (i}  j1)) }, min{ (0 jr), B(0"  j1) } }
= min{pus (0 (i1 ja), 0" (3 % 1)), (05 1, 0" % 1) }
= min{y; (0,07 * (i1, 4) * (1, 71))) 1 ((0,0) % (1, 1)) }-
Hence py, isa frTBRKI of (I x I;%,(0,0'),7). O

5. CONCLUSION

In this paper, the fTBRKI concept of TBRK Alg was introduced and stud-
ied their properties. The epimorphic and into homomorphic inverse images of
a fTBRKI are also discussed and studied well. The frBRK I of a cartesian
product was also discussed in this work.
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