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HEAT AND MASS TRANSFER EFFECTS OF CASSON FLUID
IN THE ENTRANCE OF CONCENTRIC ANNULI WITH MOVIMENT OF

WALLS

SRINIVASA RAO NADIMINTI1 AND A.KANDASAMY

ABSTRACT. Heat and mass transfer effects of Casson fluid in the entrance of
concentric annuli with moviment of inner wall was analyzed here. The prob-
lem analysis concerns the simultaneous development of thermal boundary lay-
ers and hydrodynamic in concentric walls, one ring is isothermal and the other
wall being adiabatic. With the assumption that the inner ring rotates with a
fixed angular velocity, also the outer ring is at rest. The finite difference tech-
nique is applied to find the velocity Profiles, variation of pressure in the radial
coordinate direction and temperature changes in the same direction. Calcula-
tion results are obtained for different annular gap values, Casson number and
Prandtl’s number. The comparison of the results for different special cases was
made and observed.

1. INTRODUCTION

Heat and mass transfer effects of Casson fluid in the entrance of concentric
annuli with moviment of inner wall having practical importance in technical ap-
plications like, axial flow turbo machinery and polymer processing industries.
Very often, laminar flow operations provide optimal conditions to maintain a
low pumping power proportionally to the heat transfer rate. Also in the field of
nuclear reactors, this is happening when the cooling rates reduced. In the event
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of turbulent flow, when the heating begins at the inlet of the conduit, the hydro-
dynamic boundary layers are generally linear near the inlet of the conduit and
the turbulence transitions occur at a distance downstream of the inlet. There-
fore, it is necessary to take into account the presence of such a laminar inlet
flow in the calculation of heat transfer parameters for a conduit in which the
fully developed flow is turbulent. The fluid considered here is the blood model
Casson fluid, which belongs to the fluid class with "flow stress independent of
time". The Newtonian fluid flow in the entrance region heat transfer problem
in a concentric annuli was studied by [4]. [2] developed the stress-strain re-
lation for the Casson fluid with the inner cylinder is at rest and outer cylinder
rotating between two rotating cylinders in the annular space. [8] applied finite
difference method for the Power-law fluid in the annuli and found difference in
the entrance geometries. [12] have applied finite difference technique to an-
alyze the laminar flow of a Power-Law fluid in a concentric annuli with inner
wall rotating. [9] studied the flow of the Bingham plastic fluids in the concen-
tric annulus and analyzed the results for centre core velocity, pressure drop and
boundary layer thickness. [6] given the Casson fluid constitutive equation

τ
1
2 = τ0

1
2 +Kcγ̇

1
2

The fluid shear stress is denoted by τ . γ̇ is represented the strain rate. τ0, K2
c

are the yield value and Casson’s viscosity.
Further, Flow of Casson fluid in a pipe filled with a homogeneous porous

medium has been considered by [5]. [1] investigated Magneto hydrodynamic
flow of a non-Newtonian fluid in an eccentric annulus with heat transfer. Analyt-
ical solution in the entrance region blood flow in a concentric annuli has been
obtained by [3] assuming the blood to obey Casson model. Recently, [7,11]
investigated the flow of Herschel-Bulkley and Bingham fluids in the entrance
region of concentric annuli with the inner wall rotation. Casson fluid flow with
a side branch in a narrow tube has been investigated by [10]. The problem
of Heat and mass transfer effects of Casson fluid in the entrance of concentric
annuli with moviment of inner wall was analyzed here.
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2. PROBLEM FORMULATION

The Casson fluid entered in to the concentric rings horizontally with R1 and
R2 are the inner and outer radius respectively, with the uniform velocity u0 along
the axial direction with p0 as the initial pressure and t0 as the initial temperature.
The non-rotating outer ring is at rest and the inner ring rotating with the angu-
lar velocity ω. The flow is incompressible, laminar, axisymmetric with constant
physical properties, with no internal heat generation and negligible viscous dis-
sipation. Figure 1 shows the geometry of the problem. Equations in cylindrical
polar coordinates apted to the geometry of the problem for the Casson fluid are

FIGURE 1. Geometry of the Problem
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∂r

]
(2.3)

Here the velocities in the direction z, r, θ represented by u,v,w, temperature of
the fluid is denoted by t, ρ is the fluid density, pressure of the fluid is denoted by
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p and α represent the thermal diffusivity. Following are the hydrodynamic part
boundary conditions

at z = 0, p = p0

at z = 0 , R1 < r < R2, u = u0(2.4)

with z ≥ 0 , r = R1, v = u = 0 and w = ωR1

with z ≥ 0 , r = R2, v = u = w = 0

Continuity equation (2.1) with the boundary conditions (2.4) can be expressed
as:

(2.5)
∫ R2

R1

2rudr = (R2
2 −R2

1)u0
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r
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u
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K

(
R2
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) 1
2

,

where Yc is the Casson number, Ta Taylors number, Re Reynolds number, µr

is the viscosity, K is the thermal conductivity, Cp denotes the specific heat at
constant temperature, Pr denotes the Prandtl’s number and N is the annular gap
of the annuli. Dimensionless equations of (2.1)-(2.3) and (2.5) are the following
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(2.6) V
∂T

∂R
+ U

∂T

∂Z
=

1

Pr

[
∂2T

∂R2
+
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R

∂T
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]
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also

(2.7)
∫ 1

N

2RUdR = (1 −N2) .

The dimensionless boundary conditions for the hydrodynamic part associated
with the boundary conditions (2.4) are given by

at Z = 0 , N < R < 1, U = 1

at Z = 0, P = 0(2.8)

with Z ≥ 0 , R = 1, V = U = W = 0

with Z ≥ 0 , R = N, V = U = 0 , W = 1 .

For the thermal problem, we solved the problem with the following boundary
conditions, considering the non-rotating ring to be adiabatic and the rotating
ring to be isothermal are given by

at Z = 0 , N < R < 1, T = 0(2.9)

with Z ≥ 0,
∂T

∂R
= 0 , R = 1

with Z ≥ 0, T = 1 , R = N .

3. NUMERICAL SOLUTION

Figure 2 show the mesh network for the given problem and the following
difference representations are taken. We adopted and considered the numerical
method from the work of [4]. The radial and axial direction grid sizes are
represented by ∆R and ∆Z respectively.

W 2
i,j+1

N + i∆R
=

(1 −N)Re2

2Ta(1 +N)

Pi,j+1 − Pi−1,j+1
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(3.1)
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)
− ∆R

4∆Z
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2N + (2i+ 1)∆R

N + (i+ 1)∆R

)
∗(3.2)

(Ui+1,j+1 + Ui,j+1 − Ui+1,j − Ui,j)
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FIGURE 2. Grid Representation for the Problem
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+(
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)
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The above equation converts to with the boundary condition (2.8).
These group of equations (3.1)-(3.5) are solved by the iterative procedure,

using Newton-Raphson technique upto the flow becomes developed fully in the
both axial and tangential directions.

Using the known velocity profiles U and V, the equation of energy (2.6), solved
as a linear equation in T. The energy equation with the implicit finite difference
method represented by
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To get the temperature profiles of the problem, the equation (3.6) have been
solved along with boundary conditions (2.9).

4. ANALYSIS AND CONCLUSION

The finite difference analysis have been obtained for different numbers of
Casson Number Yc, annular gap values N and various parameters as shown in
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Table 1. Number 15 chosen as the Prandtl’s number. Here, the velocity profiles,
temperature and pressure of the annuli have been shown in following figures.

Also we have choosen Aspect ratio as 0.3, 0.8 and the corresponding Radial
Position as 0.1, 0.05, Axial Position as 0.01, 0.03.

Figures 3 to 4 show the velocity profiles in the tangential direction with as-
pect ration values 0.8 and 0.3 and for different values of Casson numbers Yc
with Prandtl’s number 15. The computation has been done for various values
of the parameter Rt to study the effect of rotation of inner cylinder. The val-
ues corresponding to Rt=1 and 20 are depicted in the figures. The tangential
velocity values are low from the inner ring to the non-rotating outer ring of the
annuli. Also it is observed that with the high of annular gap N, the tangential
velocity profiles are also high. Further, as observed for the other yield-stress
fluid, viz. Bingham fluid, also it is observed that with the increment of Casson
value(number), the tangential velocity profiles are increasing.

Figures 5 to 6 show the velocity profiles in the axial direction with aspect
ration values 0.8 and 0.3 at axial positions of Z = 0.01, 0.03 and for various
values of the Casson numbers Yc. Also observed that, with increment of the
aspect ratio N, the axial velocities are high at all values of Casson numbers
Yc. Then it is found, the velocity profile looks the parabolic shape with Casson
number Yc being zero (Newtonian fluid).

The velocity profiles along the radial direction with aspect ration values 0.8
and 0.3 for various values of the Casson numbers Yc at different axial positions
Z are shown in Figures 7 to 8. Again, the parameter Rt values are taken as 1
and 20 for computational purpose. At the region near the non-rotating outer
ring the radial velocity values are negative, because it is in the radial coordinate
opposite direction. Near the rotating inner ring, it has the positive values since it
is in same radial coordinate direction. The values of the radial velocity decreases
with increase of Casson number Yc. Because of the angular rotation of the inner
ring of the annulus this phenomena is observed.

Figures 9 to 10 show the pressure variation in the radial direction R with
aspect ration values 0.8 and 0.3 for different values of Casson numbers Yc. It
is observed that the values of P increases from the low at the rotating ring to
a high at the non-rotating outer ring of the annulus. Also, it is observed that
increment in the value of Casson numbers Yc, decrease the pressure values P.
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Further, it is noted that near the outer wall region the pressure is not changed
much when compare with the radial direction.

Figures 11 to 18 show the distribution of temperature T for N=0.3, 0.8 at
axial positions of Z=0.02, 0.03, 0.04, 0.05 and Z=0.01, 0.02, 0.03, 0.04 for
various values of Casson number Yc=0, 10, 20, 30. Here the Prandtl’s number
is fixed as 15. Also it is noted with the previous observations, the distribution
of temperature is low with the high Casson Numbers for a fixed annular gap.
With the annular gap N is high, the temperature is also high for a constant
Casson Number value. then, noted that with the high axial direction values the
temperature is high for a constant annular gap N and Casson Number Yc. The
present results are compared with other recent work done for a particular case
of stationary cylinders

Here we presented the numerical solution to the blood model casson fluid
in entrance zone of concentric annuli. The aspect ratio number N, Prandtl’s
and Casson number effects on the distribution of temperature are analyzed.
The results were estimated for all the values of the Casson number, Prandtl’s
number and the aspect ratio N. The distribution of the temperature in the radial
coordinate direction has been geometrically represented and the comparison of
the current results with the available results in literature for different special
cases was made and observed to be concordant.

From the above analysis, the following points can be drawn:

(1) From the above figures we can say that, from the inner ring to the non-
rotating outer ring of the annuli, the tangential profiles are decreases.

(2) With a fixed Casson number Yc, the velocity U increases along the axial
direction, if we decrease the annular gap.

(3) The pressure is found to be low at the rotating wall and gradually in-
creasing to a high at the non-rotating wall for all values of Casson num-
bers Yc. and pressure variation is not much considered along the radial
direction near the non-rotating wall of the annulus.

(4) As observed in the case of Bingham study here also the temperature
decreases from the inner ring to the non-rotating outer ring.

(5) Temperature is decreasing when we increase the Casson number Yc and
the same phenomena is observed for the increment of aspect ratio N.
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FIGURE 3. Tangential Velocity Profiles for different annular Gaps
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FIGURE 6. Pressure Variation for different annular Gaps
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FIGURE 9. Temperature Profiles for different annular Gaps
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