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RAYLEIGH WAVE PROPAGATION WITH THE EFFECT OF INITIAL STRESS,
MAGNETIC FIELD AND TWO TEMPERATURE IN THE DUAL PHASE LAG

THERMOELASTICITY

AASHISH KUMAR, SANGEETA1, AND HEENA SHARMA

ABSTRACT. In the present study the governing equation of generalized ther-
moelasticity is formulated by considering Lord and Shulman theory under the
influence of two temperature, initial stress, magnetic field and diffusion.The
equations thus formed are considered for isotropic medium in xy-plane.Surface
wave solution method is used to find the solution of these equations.The secu-
lar equation for Rayleigh wave thus obtained also satisfies radiation conditions.
Effect of two-temperature, magnetic field, diffusion, initial stress, frequency has
been shown graphically for a partical material.

1. INTRODUCTION

Rayleigh [1] discussed the first surface wave in elastic solid property in isotropic
medium. Lord and Shulman[2] developed the gernralized dynamical theory of
thermoelasticity with the help of heat transport equation which includes the
time. Green and Lindsay [3] was obtained the theory of thermoelasticity under
the action of two relaxation time. Nowaski [4] discussed the thermo diffusion
with the help of differential equations. Chandrasekharaiah and Srikantaiah [5]
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discussed the temperature of Rayleigh wave propagation dependent on ther-
moelasticity in solid half-space. Tzou [6] discovered the dual phase lag ther-
moelastic model.Abd-Alla and Ahmed [7] developed the frequency equation of
the thermoelastic orthotropic medium with gravity and initial stress. Abd-Alla
et al. [8] studied the Rayleigh wave propagation under the impact of initial
stress, magnetoelastic and gravity in half-space orthotropic medium.Sherief and
Saleh [9] obtained the theory of generalized thermoelastic diffusion, which was
allow the finite speed of thermal signal. Youssef [10] explained the new the-
ory of generalized thermoelasticity considering thermodynamic and conductive
temperature. Puri and Jordan [11] studied the effect of two temperature ther-
moelastic on plane harmonic wave. Ahmed [12] discussed the Rayleigh wave in
a thermoelastic homogenous isotropic solid half space in the context of dual-
phase-lag model and subjected to free stress, thermally insulated, boundary
condition. Abd-Alla et al. [13] studied the effect of magneto-thermoelasticity ,
initial stress and gravity field on Rayleigh waves propagation. Singh et al. [14]
strudied the Rayleigh wave propagation in isotropic medium with initial stress
and generalized magneto-thermoelastic. Mohmound [15] discussed the effect of
diffusion on generalized magneto-thermoelastic of infinite rotating nonhomoge-
noueity medium. Marin et al. [16] used thermoelaticity in the form of heat
conduction that was depend on two temperature. Ghatuary and Chakraborty
[17] used the Green-Lindsay theory for seen the effect of thermomagnetic on
Rayleigh waves with initial stress in Isotropic medium. The field equation con-
sidering two-temperature thermoelasticity with diffusion was discussed by Ku-
mari and Singh [18]. Singh et al. [19] discussed the dispersive equation of
Rayleigh wave propagation with two-temperature dual phase lag model. Kaur
and lata [20] studied the Rayleigh wave propagation in transversely isotropic
magneto-thermoelastic homogenous medium in the presence of diffusion and
three phase-lag heat transfer.

2. BASIC EQUATIONS

Following Sherief et al (2004), the governing equations for a linear, isotropic
and homogeneous elastic solid with generalized thermodiffusion at constant
temperature T in the absence of body force are:
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(i) The displacement-strain relation

eij =
1

2
(ui,j + uj,i).

(ii) The energy equation

−qi,i = ρT0Ṡ.

(iii) The modified Fourier’s law

−KijΦ,j = qi + τ0q̇i.

(iv) The equation of motion

(2.1) µui,jj + (λ+ µ)uj,ij − β1Θ,i − β2C,i = ρüi.

(v) The equation of heat conduction:

(2.2) ρcE(Θ̇ + τ0Θ̈) + β1T0(ė+ τ0ë) + aT0(Ċ + τ0C̈) = KΦ,ii.

(vi) The equation of mass diffusion:

(2.3) D∗β2e,ii +D∗aΘ,ii + Ċ + τC̈ −D∗bC,ii = 0.

(vii) Maxwell stresses

σ̄ijµe[Hihj +Hjhi − (H.h)δij].

(viii) The constitutive equations

σij = 2µeij + δij(λekk − β1Θ− β2C).

ρT0S = ρcEΘ + β1T0ekk + aT0C,

P = −β2ekk + bC − aΘ,

where ρ is the density, λ, µ are constant of Lame , σij is the stress tensor, eij
is the stain tensor, ui is the displacement vector, wij is the rotation tensor, S is
the entropy per unit mass, C is the mass-concentration, cE is the specific-heat at
constant strain, K is the thermal-conductivity, D∗ is the thermal diffusion , τ0 is
thermal relaxation, τ is diffusion relaxation time, a∗ > 0 is the two-temperature
parameter, a,b are the thermal diffusion effects and diffusive effects, p0 is the
initial stress parameter, h is the perturbed magnetic field over , j is the electric
current density, µe is the magnetic permeability, h = ∇×(µ×H0) andH = H0+h,
β1 = (3λ+ 2µ)αt and β2 = (3λ+ 2µ)αc, αt is the Linear thermal-expansion, αc is
the diffusion expansion.
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The temperature relation:

(2.4) Φ−Θ = a∗Φ(ii),

and Θ = T − T0 is the small temperature increment , T is the absolute tem-
perature, T0 is the reference uniform temperature such that Θ

T0
<< 1 Φ is the

conductive temperature and a∗ is the parameter of two temperature.

3. FORMULATION OF PROBLEM AND SOLUTION

We consider a isotropic and homogenous medium of Rayleigh wave with ini-
tial stress, diffusion and magneto-thermo-elastic half-space of an infinite extent
with Cartesian coordinate (x,y,z) which is at uniform temperature previously.
The origin is being taken on plane surface and consider (z > 0) normal into the
medium. We consider the plane stress parallel to the x-z plane in the present
study and the displacement vector is (u1, 0, u3)

(3.1) u1 =
∂φ

∂x
− ∂ψ

∂z
, u3 =

∂φ

∂z
+
∂ψ

∂x
,

By using of equation(2.4)and (3.1),after solving the equations from (2.1)-(2.3)
then we have

(µ− p0

2
)(ψ,11 + ψ,33) = ρψ̈,(3.2)

(λ+ 2µ+ µeH
2
0 )(φ,11 + φ,33)− β1Θ− β2C = ρφ̈,(3.3)

K(Φ,11 + Φ,33) = ρcEτmΘ̇ + β1T0τm
∂

∂t
52 φ+ aT0τmĊ,(3.4)

D∗β252 (φ,11 + φ,33) +D∗a(Θ,11 + Θ,33)−D∗b(C,11 + C,33) + τnĊ = 0 ,(3.5)

where τm = 1 + τn
∂
∂t

and τn = 1 + τ ∂
∂t
. Surface waves moves along the x-axis in

magneto-thermo-elastic with isotropic medium, so potential functions ψ, φ,Φ, C
are considered in the form of which are given as:

(3.6) [ψ, φ,Φ, C] = [ ˆψ(z), ˆφ(z), ˆΦ(z), ˆC(z)]eι(ηx−χt) .

Now put the value of ψ in equation (3.2) from equation(3.6), we have

r4
2

η2
= 1− ρc2

µ− p2/2
.
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Again, after put the value of φ,Φ, C in equations (3.3)-(3.5) from (3.6), then
we get the following non trivial solution

D6 − LD4 +MD2 −N = 0,

where L = 3η2 − [(K̄ − a∗)(χ2τn
∗ λ+2µ+µeH2

0

ρ
−D∗aχ2 − β̄2D

∗β2)

−D∗a(
λ+2µ+µeH2

0

ρ
+ β̄1ε1) +D∗b(χ2ε2a

∗ − ε2 λ+2µ+µeH2
0

ρ
)

+ β̄2D
∗β2a

∗]/[D∗a(a∗ε1β̄1 − λ+2µ+µeH2
0

ρ
(K̄ − a∗))

+ a∗D∗b(
λ+2µ+µeH2

0

ρ
ε2 + β̄2ε1)],

M = 3η4 − 2η2[(K̄ − a∗)(χ2τn
∗ λ+2µ+µeH2

0

ρ
−D∗aχ2 − β̄2D

∗β2)

−D∗a(
λ+2µ+µeH2

0

ρ
+ β̄1ε1) +D∗b(χ2ε2a

∗ − ε2 λ+2µ+µeH2
0

ρ
)

+ β̄2D
∗β2a

∗ + τn
∗((K̄ − a∗)χ4 + β1ε1 +

λ+2µ+µeH2
0

ρ
)

− χ2(D∗a+ ε2D
∗b)−D∗β2(β̄2 + β̄1ε2)]/[D∗a(a∗ε1β̄1

− λ+2µ+µeH2
0

ρ
(K̄ − a∗)) + a∗D∗b(

λ+2µ+µeH2
0

ρ
ε2 + β̄2ε1)],

N = η6 − 2η4[(K̄ − a∗)(χ2τn
∗ λ+2µ+µeH2

0

ρ
−D∗aχ2 − β̄2D

∗β2)

−D∗a(
λ+2µ+µeH2

0

ρ
+ ¯β1ε1) +D∗b(χ2ε2a

∗ − ε2 λ+2µ+µeH2
0

ρ
) + β̄2D

∗β2a
∗

+ τn
∗((K̄ − a∗)χ4 + β1ε1 +

λ+2µ+µeH2
0

ρ
)− χ2(D∗a+ ε2D

∗b)

−D∗β2(β̄2 + β̄1ε2)− χ4τ ∗ − η2[τn
∗((K̄ − a∗)χ4 + β1ε1 +

λ+2µ+µeH2
0

ρ
)

− χ2(D∗a+ ε2D
∗b)−D∗β2(β̄2 + β̄1ε2)]/[D∗a(a∗ε1β̄1

− λ+2µ+µeH2
0

ρ
(K̄ − a∗)) + a∗D∗b(

λ+2µ+µeH2
0

ρ
ε2 + β̄2ε1)],

ε1 = β1T0
ρcE

, ε2 = T0
ρcE

, K̄ = K
χ2ρcEτ∗

, τ ∗m = iτm
χ
, τ ∗n = iτn

χ

Some general solutions of equations (3.2) to (3.5) are given as

ψ(z) = [Eexp(−r4z) + E
′
exp(r4z)]eι(ηx−χt),(3.7)

φ(z) =
3∑
i=1

[Fiexp(−riz) + Fi
′
exp(riz)]eι(ηx−χt),(3.8)

Φ(z) =
3∑
i=1

[Giexp(−riz) +Gi
′
exp(riz)]eι(ηx−χt),(3.9)

C(z) =
3∑
i=1

[Hiexp(−riz) +Hi
′
exp(riz)]eι(ηx−χt),(3.10)

where E,Fi, Gi, Hi, E
′
, Fi

′
, Gi

′
, Hi

′
are the arbitrary constants , In general the

roots are complex, therefore W.L.O.G we assume Real(r1)>0. With the help
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of the ψ(z), φ(z),Φ(z), C(z) → 0 as z → ∞ as .Then the solution (3.7)-(3.10)
reduces to the particular solution in the half space if z > 0

ψ(z) = Eexp(−r4z)eι(ηx−χt),(3.11)

φ(z) =
3∑
i=1

Fiexp(−riz)eι(ηx−χt),(3.12)

Φ(z) =
3∑
i=1

PiFiexp(−riz)eι(ηx−χt),(3.13)

C(z) =
3∑
i=1

Pi
∗Fiexp(−riz)eι(ηx−χt),(3.14)

here Gi = PiFi and Hi = Pi
∗Fi and

Pi = η2
ε2[µ−p0

ρ
(−1 +

r2i
η2

) + χ2

η2
] +

¯
β2ε1(−1 +

r2i
η2

)

ε2β̄1[1− a∗η2(−1 +
r2i
η2

)]− β̄1[K̄η2(−1 +
r2i
η2

) + 1− a∗η2(−1 +
r2i
η2

)]

P ∗
i = η2

β̄1D
∗β2(−1 +

r2i
η2

)2 +D∗a[µ−p0
ρ

(−1 +
r2i
η2

) + χ2

η2
]

β̄2[D∗b(−1 +
r2i
η2

) + χ2

η2
] + β̄2D∗a(−1 +

r2i
η2

)
(i = 1, 2, 3).

4. BOUNDARY CONDITION

The appropriate boundary conditions at stress free surface z = 0 are

(4.1) σzz + σ̄zz = 0, σzx + σ̄zx = 0,
∂P

∂z
= 0,

∂Θ

∂z
+ hΘ = 0.

Thus, applying the boundary condition (4.1) in equation equations (3.11) to
(3.14) then find the homogeneous system of equation E,F1, F2 and F3

(4.2)

4µ2 r4 − h
η

[
r1

η
S2
r3

η
Z3 − S3

r2

η
Z2 −

r2

η
S1
r3

η
Z3 − S3

r1

η
Z1 +

r3

η
S1
r2

η
Z1 − S2

r1

η
Z2]

− [(µ+
p0

2
) +

r2
4

η
(µ− p0

2
)− h

η
][R1S2

r3

η
Z3 − S3

r2

η
Z2 −R2S1

r3

η
Z3 − S3

r1

η
Z1

+R3S1
r2

η
Z1 − S2

r1

η
Z2]
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where

Ri = −(λ+ µeH
2
0 ) + (λ+ 2µeH

2
0 )
ri

2

η2
− β1[1− a∗(−1 +

r2
i

η
)]
Pi

2

η2
− β2

Pi
∗

η2
,

(i = 1, 2, 3)

Si = β2(−1 +
ri

2

η2
) + b

Pi
∗

η2
− a[1− a∗(−1 +

ri
2

η
)]
Pi
η2
.

Zi = 1− a∗(−1 +
r2
i

η2
) .

Then the expression (4.2) is known as frequency or dispersive equation of prop-
agating Rayleigh-Surface waves with magnetic, diffusion and initial stress in
two-temperature-thermo-elastic medium along with dual-phase lag.

5. SPECIAL CASE

For thermally insulated case (h→ 0 ) and in the absence of initial stress, mag-
netic field, two temperature , Diffusion, the frequency equation (4.2) reduces to

(5.1) (2− c2

c2
2

)2 =

√
4(1− c2

c2
1

)(1− c2

c2
2

) ,

where Xi, Yi, Pi, P
∗
i , Ri, Si, Zi calculated accordingly. Expression (5.1) is the

Rayleigh wave speed equation for elastic medium.

6. NUMERICAL RESULTS AND DISCUSSION

For the calculation of propagation of non dimensional speed of Rayleigh-
waves, following Kumari and Singh (2016) the constant are taken for two-
temperature thermo-elasticity solid half-space with diffusion, such as
T0 = 300KC,K = 0.494× 102W.m−1.s−1.deg−1, λ = 5.775× 1010N.m2,

cE = 2.361 × 102J.Kg−1.deg−1, τ0 = 0.05s, a = 0.005, b = 0.05, ρ = 2.7 ×
103Kg.m−3.

We obtain the dimensionless wave speed of Propagation of Rayleigh wave
from equation (4.2) for different range of diffusion relaxation time (τ), thermos-
diffusion (D∗), two-temperature a∗, frequency (χ), which is solved by the method
of Fortran iteration method, using with the above value of physical different pa-
rameter.
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FIGURE 1. speed plot against frequency

Figure 1 shows that the speed is plotted against frequency for the different
values of the H0=-10,0,10. Its shows that for the value of magnetic field -
10,10 speed sharply decreases and then remain constant for the increase of the
frequency. For the magnetic field 0 the value slowly decreases and then remains
constant for the increase of the frequency.

FIGURE 2. Speed plotted against Magnetic Field

Figure 2 Shows that the speed plotted against the Magnetic field for the dif-
ferent values of the two temperature parameter a*=0.1,0.5,0.9. It shows that
the speed remains constant for the values of two temperature paramerter 0.1
and 0.5 . For the value of two temp. parameter 0.9 it slowly decrease and then
slowly increase with increase of the Magnetic filed.
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FIGURE 3. Speed Plotted against Diffusion

Figure 3 Shows that the speed is plotted against the Diffusion parameter for
the different values of the magnetic field . Speed remains constant for all the
values of magnetic field against the diffusion parameter. It shows the compar-
sion for the different values of magnetic field parameter (−10, 0, 10).

7. CONCLUSION

The general surface wave solutions of the governing equations of isotropic
initial stress, magnetic field, two-temperature and diffusion thermo-elasticity
are obtained. With the help of suitable radiation conditions, the general solu-
tions are reduced to particular solutions in the half-space. The particular solu-
tions satisfy the required boundary conditions at stress free thermally insulated
or isothermal surface and we obtain the frequency equation of Rayleigh wave.
Some particular cases of the frequency equation are derived. In absence of initial
stress, Magnetic field, diffusion and two temperature parameters, the frequency
equation reduces to the classical isotropic elastic case. The frequency equation
is approximated for numerical purpose and then solved numerically for a partic-
ular model of the material. The non-dimensional speed of propagation is plotted
against the frequency, Initial stress, Magnetic field, two-temperature and diffu-
sion parameters. The numerical results describe the effects of frequency, initial
stress, magnetic field, two-temperature and diffusion on the non-dimensional
speed of propagation.
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