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ENERGY SOURCE IMPACTS ON STEADY CHEMICALLY RADIATIVE
JEFFREY LIQUID OVER A SHEET

ABBURI SREENIVASA RAO1, PEDDI PHANI BUSHAN RAO, AND CHARAN KUMAR GANTEDA

ABSTRACT. This study is the collective impact of energy and momentum trans-
port in Jeffrey fluid over a stretching sheet in the occurrence of energy source/
sink, thermal radiation and chemical reaction. The surface thermal and the
dilution are implicit to vary according to power law form. The foremost PDE
equations of our replica are renovated into ODEs by employing similarity vari-
ables and then sketched out via HAM technique. Impact of embedding motion
factors on motion thermal and momentum have been framed in the brightness
of parametric study. The influences of different pertinent parameters are ex-
plained through graphs and tables. Favorable comparison with existing litera-
tures has been revealed and it depicts tremendous similarity. It is observed that
the flow increases with an increase in Deborah number. Further the thermal
is a blow down function of Deborah number. Thermal border layer thickness
increases by rising the wall thermal and energy source parameters.

1. INTRODUCTION

The attention in energy transport problem connecting non-Newtonian liq-
uids has grown considerably as the application of non-Newtonian liquids.Typical
non- Newtonian flow characteristic include shear-thinning, shear thickness, visco-
elasticity, visco-elasticity and so forth. In view of this a lot of interest has been
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shown towards the study of non-Newtonian flows and hence extensive literature
regarding analytical and numerical solution is available on the topic [1-12].

Exact solutions further narrow down when non-Newtonian liquids are taken
into account [13-14]. Hayat et al. [15] proposed the impacts of Newtonian
energying magnetohydrodynamics (MHD) in a motion of a Jeffrey liquid over a
radially stretching surface. In the same year, Hayat et al. [16] carried out the
study of border layer stretched motion of a Jeffrey liquid subject to the convec-
tive border settings. Shehzad et al. [17] analytically discussed magnetohydro-
dynamics (MHD) three-dimensional motion of Jeffrey liquid in the presence of
Newtonian energying. Farooq et al. [18] examined the mutual impacts of Joule
and Newtonian energying in magnetohydrodynamic (MHD) motion of Jeffrey
liquid over a stretching cylinder with energy source/sink solved analytically by
homotopy analysis technique (HAM).

The transport of energy is important because the rate of cooling can be re-
stricted and final products of desired characteristics might be achieved. The
flow on a flat plate with regular free stream has been examined by Basius [19].

Hayat and Mustafa [20] explained the impact of the thermal radiation on
the unsteady mixed convection motion of Jeffrey liquid past a porous vertical
stretching surface analytically using homotopy analysis technique. Hayat et al.
[21] extended the previous idea to examine the motion of an incompressible
Jeffrey liquid over a stretching surface in the presence of power energy flux and
energy source. Shehzad et al. [22] derived homotropy solutions for magneto-
hydrodynamic radiative motion of an incompressible Jeffrey liquid over a lin-
early stretched surface. In another study, Shehzad et al. [23] proposed the 3D
hydromagnetic motion of Jeffrey liquid with nanoparticles where the impacts
of thermal radiation and internal energy generation are considered. Hussain
et al. [24] analyzed energy and momentum transport analysis of two dimen-
sional hydromagnetic motion of an incompressible Jeffrey nanoliquid over an
exponentially stretching surface in the presence of thermal radiation, viscous
dissipation, Brownian motion, and thermophoresis impacts. Very recently, the
influence of melting energy transport and thermal radiation on MHD stagnation
point motion of an electrically conducting Jeffrey liquid over a stretching sheet
with partial surface slip has been conducted numerically by Das et al. [25] with
the assist of RungeKutta-Fehlberg technique.
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Here our main focus is to discuss the influence of thermal radiation on steady
convection motion of Jeffrey liquid over a stretching sheet with energy source/sink.
The HAM technique is applied in this study in order to find the numerical solu-
tions for flow, thermal and dilution profiles. Terminology of skin friction, Nusselt
number and Sherwood number are also given. Graphical results are provided
and discussed for embedded parameters.

2. MATHEMATICAL FORMULATION

We consider a steady two-dimensional laminar radiative motion of an incom-
pressible Jeffrey liquid over a stretching surface. Here the impact of chemical
reaction is taken into account. A Cartesian coordinate system is chosen in such
a way that x-axis is along the stretching surface and the y-axis perpendicular to
it. The motion configuration and coordinate system are as shown in Figure 1.

The constitutive equations for Jeffrey liquid can be written as τ = −pI + S,
With S as the extra stress tensor and it defined by

S =
µ

1 + λ

[
R1 + λ1

(
∂R1

∂t
+ V • ∇

)
R1

]
,

where τ is the Cauchy stress tensor µ ,is the dynamic viscosity λ1, λ2 and are
the material parameters of Jeffrey liquid and R1 is the Rivlin-Ericksen tensor
defined by R1 = (∇V ) + (∇V )′ .

Under the border layer approximations, the governing equations for conser-
vation of momentum, momentum, thermal energy and nanoparticle dilution of
this problem can be expressed as

(2.1)
∂u

∂x
+
∂v

∂y
= 0,
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(2.2)

u
∂u

∂x
+ v

∂u

∂y
=

v

1 + λ

{
∂2u

∂y2
+ λ1{u

∂3u

∂x∂y2
+ v

∂3u

∂y3
− ∂u

∂x

∂2u

∂y2
+
∂u

∂y

∂2u

∂x∂y
}
}

(2.3)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
− 1

ρcp

∂qr

∂y
+

1

ρcp
Q0(T∞ − T )

(2.4)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
− k0(C − C∞) .

Subject to the border settings

u = Uw(x) = cx, v = 0, T = Tw = T∞ + A1

(x
l

)n
,(2.5)

C = Cw = C∞ + A2

(x
l

)n
at y = 0, u→ 0, T → T∞, C → C∞ as y →∞ ,

where and are the flow components in and directions, is the kinematic viscos-
ity, is the liquid density, is the ratio of relaxation and retardation times, is the
relaxation time, is the electrical conductivity of the liquid, is the coefficient of
viscosity, is the specific energy at constant pressure, is the thermal in the bor-
der layer, is the dilution of the liquid, is the thermal conductivity, is the energy
source coefficient, is the radiative energy flux, is the free stream thermal, is the
free stream dilution , is the proportionality constant, is the diffusion coefficient,
is the chemical reaction rate, are the constants depending upon the properties
of the liquid, is the characteristic length.

Now, we introduce the following similarity transformations:

u = Cxf 1(ς) = ς = y

√
c

v
= v = −

√
cvf(ς), θ(ς) =

T − T∞
Tw − T∞

, φ(ς) =
C − C∞
Cw − C∞

.

Equation (2.1) is automatically satisfied and the equations (2.2) to (2.5) can be
written as:

(2.6) f ′′′ + β
(
f ′′2 − ff ′′′

)
+ (1 + λ)

(
ff ′′ − f ′2

)
= 0

(2.7)
(
1 +

4

3
R

)
θ′′ + Pr fθ′ − nPr f ′θ + PrQθ = 0

(2.8) φ′′ + Scfφ′ − nScf ′φ− ScKφ = 0
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The border settings are

(2.9) f (0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1f ′ (∞) = 0, θ(∞) = 0, φ(∞) = 0 ,

where prime denotes differentiation with respect to

ζ, β = λ1c

is the Deborah number,

Pr =
ρCpv

k

is the Prandtl number,

R =
4σ∗T 3

∞
kk∗

is the radiation parameter,

Q =
Q0

ρCpc

K =
k0
c

is the energy generation parameter, is the chemical reaction parameter,

Sc =
v

DB

is the Schmidt number.
Here, we depict the steps to acquire the solutions of the Equations (2.6) to

(2.8) subjected to the border settings (2.9) using HAM. For this intent, we take
the initial guesses f0,θ0 and φ0 of f ,θ and φ in the following form

f0(ζ) = 1− e−ζ , θ0(ζ) = e−ζ , φ0(ζ) = e−ζ .

The linear operators are selected as

L1 (f) = f ′′′ − f ′, L2 (θ) = θ′′ − θ, L3 (φ) = φ′′ − φ

with the following properties

L1

(
C1 + C2e

ζ + C3e
−ζ) = 0

L2

(
C4e

ζ + C5e
−ζ) = 0

L3

(
C6e

ζ + C7e
−ζ) = 0
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where Ci(i = 1 to 7) are the arbitrary constants. We construct the zeroth-order
deformation equations as

(1− p)L1 (f (ζ; p)− f0(ζ)) = pN1 [f (ζ; p)]

(1− p)L2 (θ (ζ; p)− θ0(ζ)) = pN2 [f (ζ; p) ; θ (ζ; p)]

(1− p)L3 (φ (ζ; p)− φ0(ζ)) = pN3 [f (ζ; p) ;φ (ζ; p)] ,

subject to the border settings

f(0; p) = 0, f ′(0; p) = 1, f ′(∞; p) = 0, θ(0; p) = 1, θ(∞; p) = 1, θ′(0; p) = 1, φ(∞; p) = 0

N1 [f (ζ; p)] =
∂3f (ζ; p)

∂ζ3
+ β

((
∂2f (ζ; p)

∂ζ2

)
− f (ζ; p) ∂

4f (ζ; p)

∂ζ4

)
+(1 + λ)

(
f (ζ; p)

∂2f(ζ; p)

∂ζ2
−
(
∂f(ζ; p)

∂ζ

)2
)

N2 [f (ζ; p) , θ(ζ; p)] =

(
1 +

4

3
R

)
∂2θ(ζ; p)

∂ζ2
+ Pr

(
f(ζ; p)

∂θ(ζ; p)

∂ζ
− n∂f(ζ; p)

∂ζ
θ(ζ; p)

)
+PrQθ(ζ; p)

N3 [f (ζ; p) , θ(ζ; p)] =
∂2φ(ζ; p)

∂ζ2
+ Sc

(
f(ζ; p)

∂φ(ζ; p)

∂ζ
− n∂φ(ζ; p)

∂ζ
φ(ζ; p)−Kφ(ζ; p)

)
,

where p ∈ [0, 1] is the embedding parameter. When p = 0 and p = 1, we obtain

(2.10)
f (ζ; 0) = f0 (ζ) , f (ζ; 1) = f (ζ) , θ (ζ; 0) = θ0 (ζ) , θ (ζ; 1) = θ (ζ) ,

φ (ζ; 0) = φ0 (ζ) , φ (ζ; 1) = φ (ζ) .

Thus, as p increases from 0 to 1 then f(ζ; p),θ(ζ; p) and φ(ζ; p) vary from ini-
tial approximations to the exact solutions of the original nonlinear differential
equations.

Now, with the help of Taylor’s series, we can write

f (ζ; p) = f0 (ζ) +
∞∑
m=1

fm (ζ)pm(2.11)

θ (ζ; p) = θ0 (ζ) +
∞∑
m=1

θm (ζ)pm(2.12)

φ (ζ; p) = φ0 (ζ) +
∞∑
m=1

φm (ζ)pm.(2.13)
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where

fm (ζ) =

(
1

m!

∂mf (ζ; p)

∂pm

)
p=0

θm (ζ) =

(
1

m!

∂mθ (ζ; p)

∂pm

)
p=0

φm (ζ) =

(
1

m!

∂mφ (ζ; p)

∂pm

)
p=0

.

If the initial approximations, auxiliary linear operators and non-zero auxiliary
parameters are chosen in such a way that the series (2.11) to (2.13) are conver-
gent at p=1, then

f (ζ) = f0 (ζ) +
∞∑
m=1

fm (ζ)

θ (ζ) = θ0 (ζ) +
∞∑
m=1

θm (ζ)

φ (ζ) = φ0 (ζ) +
∞∑
m=1

φm (ζ) .

The mth-order deformation equations are follows

L1 (fm (ζ)− Xmfm−1 (ζ)) = Rf
m (ζ)

L2 (θm (ζ)− Xmθm−1 (ζ)) = Rθ
m (ζ)

L3 (φm (ζ)− Xmφm−1 (ζ)) = Rφ
m (ζ) ,

with the following border settings

fm (0) = 0, fm (0) = 0, fm(∞) = 0, θm (0) = 0,

θm (0) = 0, θm(∞) = 0, φm (0) = 0, φm (0) = 0, φm(∞) = 0

where

Rf
m (ζ) = f ′′′m−1 + β

(
m−1∑
i=0

f ′′m−1−if
′′
i −

m−1∑
i

fm−1−if
′′′
i

)
+

(1 + λ)

(
m−1∑
i=0

fm−1−if
′′
1 −

m−1∑
i=0

f ′m−1−if
′
i

)

Rθ
m (ζ) =

(
1 +

4

3

)
θ′′m−1 + Pr

(
m−1∑
i=0

fm−1−iθi − n
m−1∑
i=0

f ′m−1−iθi

)
+ PrQθm−1

Rφ
m (ζ) = φ′′m−1 + Sc

(
m−1∑
i=0

fm−1−iφ
′
i − n

m−1∑
i=0

f ′m−1−iφi −Kφm−1

)
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χm =

{
0, m ≤ 1,

1 , m > 1

}
.

3. CONVERGENCE OF HAM SOLUTION

The higher deformation equations corresponding to Equations (2.6) to (2.8)
subject to the border settings (2.9) can be formulated using above initial guesses
and linear operators (and the appropriate ideals for the non-zero parameters
~1,~2 and θ3 have been obtained by plotting the ~ -curves in Figure 1. From
the figure, it is seen that the valid regions of ~1,~2 and θ3 are about [-1.0, 0.0].
For ~1 = ~2 = θ3 our results are in good correlation with the existing results.
Table 1 displays the convergence of adopted technique. Table 1. Convergence of
HAM solution for different orders of approximations when β = 1.0,λ = 0.2,R =

0.1,Pr=0.7,n=2.0,Q=0.1,Sc=0.7,K=0.1.

TABLE 1

order −f ′′(0) −θ′(0) −φ′(0)
5 - 0.772456 - 1.4013272 - 0.944135
10 - 0.774636 - 1.012193 - 0.945268
15 - 0.774597 - 1.012486 - 0.945303
20 - 0.774596 - 1.012467 - 0.945301
25 - 0.774596 - 1.012463 - 0.945301
30 - 0.774596 - 1.012461 - 0.945301
35 - 0.774596 - 1.012461 - 0.945301
40 - 0.774596 - 1.012461 - 0.945301

4. FIGURES
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5. RESULTS AND DISCUSSION

The aspiration of this revise is to interpret the outcomes of a variety of pa-
rameters such as Deborah numberβ, surface thermal parameter (m), ratio of
relaxation and retardation times(λ) , surface thermal parameter(n) , radiation
parameter(R) , Prandtl number(Pr) , energy source parameter(Q) , Schmidt
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number(Sc) and chemical reaction parameter(K) on flow, thermal, skin friction
coefficient and Nusselt number. In this study the default parameter ideals are
undertaken for computations: β = 1.0,λ = 0.2,R = 0.1,Pr = 0.7,Q = 0.1,n =

2.0,Sc = 0.7,k = 0.1

In order to validate the numerical technique used in this study, a comparison
is made with the earlier works of Adamu Gizachew and Bandari Shankar shown
in Table 1. The results are found in excellent agreement.

Figures 3-8 are plotted to study dimensionless flow, thermal, dilution distribu-
tion, local friction, local Nusselt and local Sherwood numer for various impacts
of governing parameters. It is observed from Figures 3-5 display the character-
istics of the Deborah number(β) parameter on the motion of the liquid, thermal
border and dilution distributions. It is noticed that liquid flow enhances with in-
crease in(β), while the reverse tend for thermal and dilution of the liquid. The
manipulate of ratio of relaxation and retardation times(λ) , on flow, thermal
and dilution profile is pointed in Figures. 6-8. It is pragmatic that liquid flow is
lower for higher ideals of(λ). An opposite tendency is noticed for the variation
of(λ)on thermal and dilution of the liquid.

6. CONCLUSIONS

In this manuscript the impact of thermal radiation, chemical reaction and
energy source on steady convection of a Jeffrey fluid past over a stretching
sheet are studied. The basic equation of continuity, momentum, energy and
dilution are modelled and transformed using similarity transformation and then
solved by Homotopy Asymptotic Technique (HAM). The converted equations are
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also solved by numerical technique. A systematic study on the impacts of non-
Newtonian and other physical parameters controlling the motions, energy and
momentum transport description is approved out. From the calculated results
the following final remarks can be drawn:

(1) It was traditional that the Prandtl number blow down the thermal border
layer thickness which helps in maintaining system thermal of the fluid
flow.

(2) It is noticed that the thermal distribution is superior for energy source
parameter.

(3) From this simulation it is noticed that an enhancement in the Schmidt
number or chemical reaction parameter blow downs the dilution border
layer thickness.

(4) It is found that the non-Newtonian parameter leads to an increase in the
border layer thickness as results the liquid motion become complicated
as compared to the Newtonian liquid which has the constant viscos-
ity. Since the liquid is highly viscous so the flow is additional for non-
Newtonian liquid as compared with Newtonian due to many parameters
coming into the replica.
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