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OSCILLATION CRITERIA FOR HIGHER ORDER NONLINEAR NEUTRAL
DELAY GENERALIZED α−DIFFERENCE EQUATIONS

P. VENKATA MOHAN REDDY1 AND M. MARIA SUSAI MANUEL

ABSTRACT. In the present study, we find oscillation results for the higher order
nonlinear neutral delay generalized α−difference equation of the form

∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

+ q(k)f(x(k − ρ`)) = 0 ,

where z(k) = x(k) + p(k)x(τ(k)).

1. INTRODUCTION

The difference equations are based on the operator ∆ given in the form
of ∆u(k) = u(k + 1)− u(k), k ∈ N = {0, 1, 2, 3, · · · }. The generalized α− differ-
ence operator ∆α(`) is defined as ∆α(`)u(k) = u(k + `) − αu(k), and its inverse

defined as if ∆α(`)v(k) = u(k), then ∆−1α(`)u(k) = v(k)−α[ k` ]v(j) where α > 1 and
k ∈ N`(j), j = k −

[
k
`

]
`. The most general form is given in [3] by

∆−1α(`)u(k) =

[ k−k0−j−`` ]∑
r=0

u(k0 + j + r`)

αd
k0+j+`−k+r`

` e + αd
k−k0
` eu(k0 + j),

for all k ∈ N`(j), j = k − k0 −
[
k−k0
`

]
`.
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In recent years, there is an increasing interest in finding sufficient conditions
which ensure that all solutions or all the bounded solutions of difference equa-
tion of neutral type are oscillatory and asymptotic behavior of solutions involv-
ing operators ∆ and ∆` has been studied and many research articles was avail-
able in the literature, see for example [1, 5–11]. But, a similar study on the
oscillation of difference equations involving the operator ∆α(`) is rare. Hence
we are motivated to present the oscillation of solutions of higher-order nonlin-
ear α−difference equation of the form

(1.1) ∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

+ q(k)f(x(k − ρ`)) = 0, k ≥ k0,

where m ≥ 2 is an integer and z(k) = x(k) + p(k)x(τ(k)). Here, a(k), q(k) are
sequence of positive real number, p(k) is a bounded sequence for k ≥ k0, τ(k) is
a sequence of integers with lim

n→∞
τ(n) =∞ and ρ is a positive integer also f(x)

is a continuous real valued function such that
f(x)

x
> L > 0 for x 6= 0 and L is

a constant.
Throughout this paper we use the following notations.

(a) N = {0, 1, 2, 3, . . . }, N(a) = {a, a+ 1, a+ 2, . . . },
(b) N`(a) = {a, a+ `, a+ 2`, . . . }.
(c) dxe upper integer part of x, mi(k) =

⌈
k−ki−j−`

`

⌉
.

2. PRELIMINARIES

In this section, we present some lemmas, which will be useful in proving our
main results.

Lemma 2.1. [4] Let u(k) and v(k) be any two functions. Then, for all k ∈ [k0,∞)

∆α(`){u(k)v(k)} = u(k + `)∆α(`)v(k) + u(k + `)v(k)(α− 1) + v(k)∆α(`)u(k) .
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Lemma 2.2. [4] Let u(k) be defined on [0,∞) and k0 ∈ [0,∞). Then, for all
k ∈ [k0,∞), j = k − k0 −

[
k−k0
`

]
` and 0 ≤ m ≤ n− 1.

∆m
α(`)u(k) =

n−1∑
i=m

(k − k0 − j)(i−m)
`

(i−m)!`(i−m)
αd

k−k0−j
`

+m−ie∆i
α(`)u(k0 + j)

+

k−k0−j
`
−n+m∑

r=0

(k − k0 − j − r`− `)(n−m−1)` ∆n
α(`)u(k0 + j + r`)

(n−m− 1)!`n−m−1α−d
k−k0−j

`
+m−(n+r)e ,

where k(n)` = k(k − `)(k − 2`) . . . (k − (n− 1)`).

Lemma 2.3. Let 1 ≤ m ≤ n− 1 and u(k) be defined on N`(k0). Then,

(1) lim inf
k→∞

∆m
α(`)u(k) > 0 implies lim

k→∞
∆i
α(`)u(k) =∞, 0 ≤ i ≤ m− 1.

(2) lim sup
k→∞

∆m
α(`)u(k) < 0 implies lim

k→∞
∆i
α(`)u(k) = −∞, 0 ≤ i ≤ m− 1.

Proof. lim inf
k→∞

∆m
α(`)u(k) > 0 implies that there exists a large k1 ∈ N`(k0) such that

∆m
α(`)u(k) ≥ c > 0 for all k ≥ k1. Since

∆m−1
α(`) u(k) = αd

k−k1
` e∆m−1

α(`) u(k1 + j) +

m1(k)∑
r=0

∆m
α(`)u(k1 + j + r`)

αd
k1−k+j+r`+`

` e

it follows that ∆m−1
α(`) u(k) ≥ αd

k−k1
` e∆m−1

α(`) u(k1 + j) + c
(
k−k1−j

`

)
, and hence

limk→∞∆m−1
α(`) u(k) =∞. The rest of the proof is by induction.

Case (2) can be treated similarly. �

Lemma 2.4. Let u(k) be defined on N`(k0), and u(k) > 0 with ∆n
α(`)(k) is of

constant sign on N`(k0) and not zero. Then, there exists an integer m, 0 ≤ m ≤ n

with n + m odd for ∆n
α(`)(k) ≤ 0 or n + m even for ∆n

α(`)(k) ≥ 0 and such that
m ≥ 1 implies

∆i
α(`)u(k) > 0 for all large k ∈ N`(k0), 1 ≤ i ≤ m− 1.

and m ≤ n− 1 implies

(−1)m+i∆i
α(`)u(k) > 0 for all k ∈ N`(k0),m ≤ i ≤ n− 1.

for all large n ∈ N`(k0) and n ≥ N .

Proof. There are two possible cases.
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Case 1. ∆m
α(`)u(k) ≤ 0 on N`(k0). First, we shall prove that ∆n−1

α(`)u(k) > 0 on
N`(k0). If not, then there exists some k1 ≥ k0 in N`(k0) such that
∆n−1
α(`)u(k1) ≤ 0. Since ∆n−1

α(`)u(k) > 0 is decreasing and not constant
on N`(k0), there exists k2 ≥ k1 such that ∆n−1

α(`)u(k) ≤ ∆n−1
α(`)u(k2) ≤

∆n−1
α(`)u(k1) ≤ 0 for all k ≥ k2, But, from Lemma 2.3, we find limk→∞ u(k) =

−∞ which is a contradiction to u(k) > 0. Thus, ∆n−1
α(`)u(k) > 0 on N`(k0)

and there exists a smallest integer m, 0 ≤ m ≤ n−1 with n+m odd and

(2.1) (−1)m+i∆i
α(`)u(k) > 0 on N`(k0),m ≤ i ≤ n− 1.

Next, let m > 1 and

(2.2) ∆m−1
α(`) u(k) < 0 on N`(k0),

then once again form Lemma 2.3 it follows that

(2.3) ∆m−2
α(`) u(k) < 0 on N`(k0).

Inequalities (2.1)-(2.3) can be unified to

(−1)(m−2)+i∆i
α(`)u(k) > 0 on N`(k0),m− 2 ≤ i ≤ n− 1,

which is a contradiction to the definition of m. So, (2.2) fails and
∆m−1
α(`) u(k) ≥ 0 for all k ≥ k0. From (2.1), ∆m−1

α(`) u(k) is non-decreasing
and hence lim

k→∞
∆m−1
α(`) u(k) > 0. If m > 2, we find from Lemma 2.3 that

lim
k→∞

∆i
α(`)u(k) = ∞, 1 ≤ i ≤ m − 2. Thus, ∆i

α(`)u(k) > 0 for all large

k ≥ k0, 1 ≤ i ≤ m− 1.

Case 2. ∆n
α(`)u(k) ≥ 0 on N`(k0). Let k3 ≥ k2 be such that ∆n−1

α(`)u(k3) ≥ 0,
then since ∆n−1

α(`)u(k) is nondecreasing and not identically constant, there
exists some k4 ≥ k3 such that ∆n−1

α(`)u(k) > 0 for all k ≥ k4. Thus,
lim
k→∞

∆n−1
α(`)u(k) > 0 and from Lemma 2.3 limk→∞∆i

α(`)u(k) = ∞, 1 ≤ i ≤
n − 2 and so ∆i

α(`)u(k) > 0 for all large k in N`(k0), 1 ≤ i ≤ n − 1. This
proves the Lemma for m = n. In case ∆n−1

α(`)u(k) < 0 for all k ∈ N`(k0),
we find from Lemma 2.3 that ∆n−2

α(`)u(k) > 0 for all k ∈ N`(k0). The rest
of the proof is the same as in Case 1.

�
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Lemma 2.5. Let u(k) be defined on Nα(`)(k0), and u(k) > 0 with ∆n
` u(k) ≤ 0 on

Nα(`)(k0) and not identically equal to zero. Then, there exist a large integer k1 in
Nα(`)(k0) such that for all k ∈ Nα(`)(k1)

u(k) ≥ (k − k1 − j)(n−1)`

(n− 1)!`(n−1)
αd

k−k1−j+`
`

−ne∆n−1
` u(2n−2k)

where u(n)` = u(u− `)(u− 2`) · · · (u− (n− 1)`). Note if further {un} is increasing,
then

u(k) ≥ 1

(n− 1)!`(n−1)

(
k − j
2n−2

)(n−1)

`

αd
k−j+`
`
−ne∆n−1

` u(k) forall k ≥ 2n−1k.

Proof. Lemma 2.4 follow that (−1)n+i∆i
α(`)u(k) > 0 and ∆i

α(`)u(k) > 0 for all
large k in N`(k0), say, for all k ≥ k1 ≥ k0 , 1 ≤ i ≤ m − 1. Using these
inequalities, we obtain

−∆n−2
α(`)u(k) = −α−∞∆n−2

α(`)u(∞) +
∞∑
r=0

∆n−1
α(`)u(k + r`)

αd
r`+`
` e

≥
k∑̀
r=0

∆n−1
α(`)u(k + r`)

αd
r`+`
` e

≥ 1

`α
∆n−1
α(`)u(2k)(k)

(1)
`

∆n−3
` u(k) = α−∞∆n−3

` u(∞)−
∞∑
r=0

∆n−2
α(`)u(k + r`)

αd
r`+`
` e

≥ 1

`α

k∑̀
r=0

(k + r`)
(1)
` ∆n−1

α(`)u(2(k + r`))

αd
r`+`
` e

≥ ∆n−1
α(`)u(22k)

1

2!`2α2
(k)

(2)
`

· · · · · · · · ·

∆m
α(`)u(k) ≥ (k)

(n−m−1)
`

(n−m− 1)!`n−m−1αn−m−1
∆n−1
α(`)u(2n−m−1k).
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next we get

∆m−1
α(`) u(k) = αd

k−k1
` e∆m−1

α(`) u(k1 + j) +

m1(k)∑
r=0

∆m
α(`)u(k1 + j + r`)

αd
k1−k+j+r`+`

` e

≥
m1(k)∑
r=0

(k1 + j + r`)
(n−m−1)
` ∆n−1

α(`)u(2n−m−1(k1 + j + r`))

(n−m− 1)!`n−m−1αd
k1−k+j+r`

`
+n−me

≥ (k − k1 − j)(n−m)
`

(n−m)!`(n−m)
αd

k−k1−j
`

+m−ne∆n−1
` u(2n−m−1k).

Letting m = 1 in the above inequality, we have

u(k) ≥ (k − k1 − j)(n−1)`

(n− 1)!`(n−1)
αd

k−k1−j+`
`

−ne∆n−1
` u(2n−2k)

By replacement k = 2n−2k the proof of the lemma is completed. �

Lemma 2.6. Assume that
∞∑
r=0

α−d
k1−k+j+r`+`

` e

a(k1 + j + r`)
=∞

and let {x(k)} be a positive solution of equation (1.1) . Then there exists k1 ≥ k0
such that z(k) > 0, ∆α(`)z(k) > 0, ∆m−1

α(`) z(k) > 0 and ∆m
α(`)z(k) ≤ 0 for all k ≥ k1.

Proof. Since {x(k)} is a positive solution of equation (1.1), there exists k ≥ k0
such that x(k) > 0 and x(τ(n)) > 0 for all k ≥ k1. Then by the definition of z(k),
we have z(k) > 0 for all k ≥ k1. Also from the equation (1.1), we have

∆α(`)

(
a(k)∆m−1

α(`) z(n)
)

= −q(k)f(x(k − ρ`)) < 0 for all k ≥ k0.

Therefore, a(k)∆α(`)z(k) is decreasing and of one sign for all k ≥ k1. Since
{a(k)} is positive, we have either ∆m−1

α(`) z(k) < 0 or ∆m−1
α(`) z(k) > 0 eventually. We

shall prove that ∆m−1
α(`) z(k) > 0. If not, then there exists a constant c < 0 such

that a(k)∆m−1
α(`) z(k) ≤ c < 0 for all k ≥ k1, which implies

∆m−2
α(`) z(k)− αd

k−k1
` e∆m−2

α(`) z(k1) ≤ c

m1(k)∑
r=0

α−d
k1−k+j+r`+`

` e

a(k1 + j + r`)
.

Letting k → ∞ in the last inequality, we see that ∆m−2
α(`) z(k) → −∞. That is

∆m−2
α(`) z(k) < 0 eventually. Now ∆m−2

α(`) z(k) < 0 eventually implies ∆m−3
α(`) z(k) <

0 eventually. Continuing this process, we get z(k) < 0 eventually which is a
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contradiction. Hence ∆m−1
α(`) z(k) > 0 eventually. Moreover {a(k)} is positive and

increasing and ∆
(
a(k)∆m−1

α(`) z(k)
)
< 0 for all k ≥ k1, we have ∆m

α(`)z(k) ≤ 0 for
all k ≥ k1. �

Lemma 2.7. [2] The first order generalized α−difference inequality

∆α(`)y(k) + p(k)y(k − ρ`) ≤ 0

eventually has no positive solution if

lim inf
k→∞

k−(k−ρ`)−j−`∑̀
r=0

p(k − ρ`+ j + r`) >
1

αρ

(
ρ`

ρ`+ 1

)ρ`+1

or

lim sup
k→∞

k−(k−ρ`)−j∑̀
r=0

p(k − ρ`+ j + r`) >
1

αρ
.

3. OSCILLATION RESULTS

In this section, we present a few sufficient conditions for the oscillation of
all solutions of equation (1.1). Throughout this section we use the following
assumptions

P (k) = min{q(k), q(τ(k))}, Q(k) = LP (k), and η(k) =
∞∑
r=0

α−d
k1−k+j+r`+`

` e

a(k1 + j + r`)
.

Theorem 3.1. Assume that η(k) =∞. If
∞∑
r=0

P (k + j + r`)

αd
j+r`+`−k

` e =∞,

then every solution of equation (1.1) is oscillatory.

Proof. Let {x(k)} be a non-oscillatory solution of equation (1.1). We may assume
without loss of generality that {x(k)} is a positive solution of equation (1.1).
Then there exists a k1 ≥ k0 such that x(k) > 0, x(τ(k)) > 0 and x(k − ρ`) > 0

for all k ≥ k1. Then from Lemma 2.3, we have z(k) > 0, ∆α(`)z(k) > 0,
∆m−1
α(`) z(k) > 0 and ∆m

α(`)z(k) ≤ 0 for all k ≥ k1.
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Now, using condition f(x)
x
> L in equation (1.1), we see that

∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

= −q(k)f(x(k − ρ`)) ≤ −Lq(k)x(k − ρ`) < 0 ∀ k ≥ k1.

Therefore, a(k)∆m−1
α(`) z(k) is decreasing. Also from the last inequality, we have

∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

+ Lq(k)x(k − ρ`) + p∆α(`)

(
a(τ(k))∆m−1

α(`) z(τ(k))
)

+ Lq(τ(k))px(τ(k − ρ`) ≤ 0, ∀ k ≥ k1.

That is,

∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

+ LP (k)z(k − ρ`) + p∆α(`)

(
a(τ(k))∆m−1

α(`) z(τ(k))
)
≤ 0.(3.1)

Now summing the last inequality from k1 to k − `, we obtain

a(k)∆m−1
α(`) z(k)− αd

k−k1
` ea(k1)∆

m−1
α(`) z(k1)

+ L

m1(k)∑
r=0

P (k1 + j + r`)z(k1 + j + r`− ρ`)

αd
k1−k+j+r`+`

` e

+ pa(τ(k))∆m−1
α(`) z(τ(k))− pαd

k−k1
` ea(τ(k1))∆

m−1
α(`) z(τ(k1)) ≤ 0.

That is

L

m1(k)∑
r=0

P (k1 + j + r`)z(k1 + j + r`− ρ`)

αd
k1−k+j+r`+`

` e

≤ αd
k−k1
` ea(k1)∆

m−1
α(`) z(k1)− a(k)∆m−1

α(`) z(k)− pa(τ(k))∆m−1
α(`) z(τ(k))

+ pαd
k−k1
` ea(τ(k1)∆

m−1
α(`) z(τ(k1) ≤ 0 for all k ≥ k1.

Since ∆α(`)z(k) > 0 and z(k) > 0 there exists a constant c ≥ 0 such that
z(k− ρ`) ≥ c for all k ≥ k1 and using this and the monotonicity of a(k)∆α(`)z(k)

in the last inequity and letting k →∞, we get

L

m1(k)∑
r=0

P (k1 + j + r`)

αd
k1−k+j+r`+`

` e z(k1 + j + r`− ρ`) <∞,

which contradicts (3.1). Thus the proof is complete. �
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Theorem 3.2. Assume that η(k) =∞ and let τ(k) = k + τ . If either
(3.2)

lim inf
k→∞

ρ`−j−`∑̀
r=0

(k − 2ρ`+ r`)
(m−1)
` Q((k − ρ`) + j + r`)

αdm−
k−2ρ`+r`+`

` ea(k + j + r`− 2ρ`)
≥ β

λαρ

(
ρ`

1 + ρ`

)ρ`+1

or

(3.3) lim sup
k→∞

ρ`−j∑̀
r=0

(k + j + r`− 2ρ`)
(m−1)
` Q(k + j + r`− ρ`)

αdm−
k−2ρ`+r`+`

` ea(k + j + r`− 2ρ`)
≥ β

λαρ
,

where λ ∈ (0, 1) and β = (1+p)(m−1)!`m−1, then the solution {x(k)} for equation
(1.1) is oscillatory.

Proof. Now assume {x(k)} is a non-oscillatory solution of equation (1.1). We can
consider without loss of generality that there exists k1 ≥ k0 such that x(k) > 0,
x(τ(k)) > 0 and x(k − ρ`) > 0 for all k ≥ k1. Now proceeding as in the previous
theorem, we obtain (3.1). That is,

∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

+ LP (k)z(k − ρ`) + p∆α(`)

(
a(τ(k))∆m−1

α(`) z(τ(k))
)
≤ 0.

Now, since ∆m−1
α(`) z(k) > 0, ∆m

α(`)z(k) ≤ 0, using Lemma 2.5 there exist k2 ≥ k1
such that

∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

+
Q(k)

(m− 1)!`m−1

(
k − ρ`− j

2m−2

)(m−1)

`

αd
k−ρ`−j+`

`
−me∆m−1

α(`) z(k − ρ`)

+p∆α(`)

(
a(τ(k))∆m−1

α(`) z(τ(k))
)
≤ 0, for all k ≥ k2 ≥ 2m−2.

Put u(k) = a(k)∆m−1
α(`) z(k). Then u(k) > 0 and ∆α(`)u(k) ≤ 0 and the last in-

equality becomes

∆α(`) (u(k) + pu(τ(k)))

+
λQ(k)αd

k−ρ`−j+`
`

−me

(m− 1)!`m−1

(
(k − ρ`− j)(m−1)`

a(k − ρ`)

)
u(k − ρ`) ≤ 0,(3.4)

for all k ≥ k2, for every λ, where 0 < λ =

(
1

2m−2

)m−1
< 1.

Now put w(k) = u(k) + pu(τ(k)). Then w(k) > 0. Since u(k) is decreasing and
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having τ(k) = k + τ ≥ k, we have

(3.5) w(k) ≤ (1 + p)u(k).

Using (3.5) in (3.4), we notice that w(k) is a positive solution of

(3.6) ∆α(`)w(k) +
λQ(k)αd

k−ρ`−j+`
`

−me

(m− 1)!`m−1

(
(k − ρ`− j)(m−1)`

(1 + p)a(n− ρ`)

)
w(k − ρ`) ≤ 0,

for all k ≥ k2. Now there are two possibilities either (3.2) or (3.3) holds.
Case(i). If (3.2) holds, then by using the Lemma 2.7 we obtain the inequality
(3.6) which has no positive solution, and that is again a contradiction.
Case(ii). If the condition (3.3) holds, by Lemma 2.7 we confirm that the in-
equality (3.6) has no positive solution, which intern is also a contradiction.
This completes the proof. �

Theorem 3.3. Assume that η(k) =∞ and k − ρ` ≤ τ(k) ≤ k. If either

(3.7) lim inf
k→∞

ρ`−j−`∑̀
r=0

(k + r`− 2ρ`)
(m−1)
` Q(k + j + r`− ρ`)

αdm−
k−2ρ`+r`+`

` ea(k + j + r`− 2ρ`)
>

β

αρ

(
ρ`

1 + ρ`

)ρ`+1

or

(3.8) lim sup
k→∞

ρ`−j∑̀
r=0

(k + j + r`− 2ρ`)
(m−1)
` Q(k + j + r`− ρ`)

αdm−
k−2ρ`+r`+`

` ea(k + j + r`− 2ρ`)
>

β

αρ
,

where β = (1 + p)(m− 1)!`m−1, then every solution of equation (1.1) is oscillatory.

Proof. Similar to the proof of Theorem 3.2, we consider {x(k)} is a non-oscillatory
solution of equation (1.1). Then assume {x(k)} is a positive solution of equation
(1.1). It follows that there is an integer k1 ≥ k0 such that x(k) > 0, x(τ(k)) > 0

and x(k − ρ`) > 0 for all k ≥ k1. Now proceeding as in the previous theorem,
we obtain

∆α(`) (u(k) + pu(τ(k)))

+
λQ(k)αd

k−ρ`−j+`
`

−me

(m− 1)!`m−1

(
(k − ρ`− j)(m−1)`

a(k − ρ`)

)
u(k − ρ`) ≤ 0,(3.9)

Put w(k) = u(k) + pu(τ(k)). Then w(k) > 0. Since u(k) is decreasing, we have

(3.10) w(k) = u(k) + pu(τ(k)) ≤ (1 + p)u(τ(k)) for τ(k) ≤ k.
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using (3.10) in (3.9), we get
(3.11)

∆α(`)w(k) +
λQ(k)αd

k−ρ`−j+`
`

−me

(m− 1)!`m−1

(
(k − ρ`− j)(m−1)`

(1 + p)a(n− ρ`)

)
w(τ−1(k − ρ`)) ≤ 0,

for all k ≥ k1.Thus {w(k)} is a positive solution of the inequality (3.11). Now,
we have to consider two cases namely:
Case(i). If (3.7) holds, then by using Lemma 2.7, we obtain the inequality
(3.11), which has no positive solution, a contradiction.
Case(ii). If the condition (3.8) holds, Lemma 2.7 confirms that the inequality
(3.11) has no positive solution, which is again a contradiction.
This completes the proof. �

Theorem 3.4. Assume that η(k) < ∞ and k − ρ` ≤ τ(k) ≤ k. If either (3.7)
or when τ−1(k − ρ`) is nondecreasing with (3.8) holds and for sufficiently large
k1 ≥ k0

k−k0−j−`∑̀
r=0

[
λδ(k2 + j + r`)Q(k0 + j + r`)(k0 + j + r`− ρ`)m−2`

(m− 2)!`m−2αd
r`−ρ`+`

`
−me

− (1 + p)α−d
r`+j+`

` e

4a(k0 + j + r`+ `)δ(k0 + j + r`)

]
=∞,(3.12)

then every solution {x(k)} of equation (1.1) is oscillatory.

Proof. Let {x(k)} be a non-oscillatory and be a positive solution for equation
(1.1). Then there exists an integer k1 ≥ k0 such that x(k) > 0, x(τ(k)) > 0 and
x(k − ρ`) > 0 for all k ≥ k1. From equation (1.1) we see that
∆α(`)

(
a(k)∆m−1

α(`) z(k)
)
≤ 0 for all k ≥ k1. Since {a(k)} is positive, ∆m−1

α(`) z(k)

is of one sign for all k ≥ k1.
Case(i): Suppose ∆m−1

α(`) z(k) > 0 eventually, the proof for this case is similar to
Case (i) of Theorem 3.3 and hence we omit the details.
Case(ii): Suppose ∆m−1

α(`) z(k) < 0 eventually, then by Lemma 2.4, we have
∆m−2
α(`) z(k) > 0 and ∆α(`)z(k) > 0. Now define w(k) by

w(k) =
a(k)∆m−1

α(`) z(k)

∆m−2
α(`) z(k)

for all k ≥ k2 ≥ k1.
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Then w(k) < 0 and

∆α(`)w(k) =
∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

∆m−2
α(`) z(k)

−
a(k + `)∆m−1

α(`) z(k + `)

∆m−2
α(`) z(k + `)∆m−2

α(`) z(k)
∆m−1
α(`) z(k)

+ (1− α)
a(k + `)∆m−1

α(`) z(k + `)

∆m−2
α(`) z(k + `)

for all k ≥ k2.

Since a(k)∆m−1
α(`) z(k) is decreasing and ∆m−2

α(`) z(k) is increasing, we have

(3.13) ∆α(`)w(k) ≤
∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

∆m−2
α(`) z(k)

− w2(k + `)

a(k + `)
+ (1− α)w(k + `).

Using the decreasing nature of a(k)∆m−1
α(`) z(k) we have

a(k3)∆
m−1
α(`) z(k3) ≤ a(k)∆m−1

α(`) z(k) for all k3 ≥ k ≥ k2.

Dividing the last inequality by a(k3) and then summing it from k to k3 − `, we
obtain

∆m−2
α(`) z(k3)− αd

k3−k
` e∆m−2

α(`) z(k) ≤ a(k)∆m−1
α(`) z(k)

k3−k−j−`∑̀
r=0

αd
k−k3+j+`+r`

` e

a(k + j + r`)
.

Letting l→∞, we obtain

0 ≤ αd
k3−k
` e∆m−2

α(`) z(k) + a(k)∆m−1
α(`) z(k)δ(k)

or − 1 ≤
a(k)∆m−1

α(`) z(k)δ(k)

αd
k3−k
` e∆m−2

α(`) z(k)
=
w(k)δ(k)

αd
k3−k
` e

≤ 0 for all k3 ≥ k ≥ k2.

Define v(k) by

(3.14) v(k) =
a(τ(k))∆m−1

α(`) z(τ(k))

∆m−2
α(`) z(k)

for all k3 ≥ k ≥ k2.

We obtain v(k) ≤ 0 and

−1 ≤ v(k)δ(k)

αd
k3−k
` e

≤ 0 for all k3 ≥ k ≥ k2.
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From (3.14), we get

∆α(`)v(k) =
∆α(`)

(
a(τ(k))∆m−1

α(`) z(τ(k))
)

∆m−2
α(`) z(k)

+ (1− α)
a(τ(k + `))∆m−1

α(`) z(τ(k + `))

∆m−2
α(`) z(k + `)

−
a(τ(k + `))∆m−1

α(`) z(τ(k + `))

∆m−2
α(`) z(k + `)∆m−2

α(`) z(k)
∆m−1
α(`) z(k)

≤
∆α(`)

(
a(τ(k))∆m−1

α(`) z(τ(k))
)

∆m−2
α(`) z(k)

− v2(k + `)

a(τ(k + `))
+ (1− α)v(k + `).(3.15)

Combining (3.13) and (3.15), we obtain

∆α(`)w(k) + p∆α(`)v(k) ≤
∆α(`)

(
a(k)∆m−1

α(`) z(k)
)

∆m−2
α(`) z(k)

− w2(k + `)

a(k + `)
+ (1− α)w(k + `)

+ p
∆α(`)

(
a(τ(k))∆m−1

α(`) z(τ(k))
)

∆m−2
α(`) z(k)

− p v2(k + `)

a(τ(k + `))
+ p(1− α)v(k + `).

Using (3.1) in the last inequality, we have

∆α(`)w(k) + p∆α(`)v(k) ≤ −LP (k)z(k − ρ`)
∆m−2
α(`) z(k)

− w2(k + `)

a(k + `)
− p v2(k + `)

a(τ(k + `))

+ (1− α)w(k + `) + p(1− α)v(k + `).(3.16)

Now from Lemma 2.5 we obtain

(3.17) z(k − ρ`) ≥ λαd
k−ρ`−j+`

`
−ne

(m− 2)!`m−2
(k − ρ`− j)(m−2)` ∆m−2

α(`) z(k − ρ`).

Since ∆m−1
α(`) z(k) < 0 and k − ρ` ≤ k, we have

(3.18) ∆m−2
α(`) z(k) < ∆m−2

α(`) z(k − ρ`).

Combining the inequalities (3.16), (3.17) and (3.18), we obtain

∆α(`)w(k) + p∆α(`)v(k) ≤ −λQ(k)αd
k−ρ`−j+`

`
−ne

(m− 2)!`m−2
(k − ρ`− j)(m−2)`

− w2(k + `)

a(k + `)
− pv

2(k + `)

a(k + `)
− (α− 1)w(k + `)− p(α− 1)v(k + `).(3.19)
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Multiplying (3.19) by δ(k) and summation is taken on the resulting inequality
from k2 to k − `, we obtain

δ(k)w(k)− αd
k−k2
` eδ(k2)w(k2) +

m2(k)∑
r=0

w(k2 + j + r`+ `)

a(k2 + j + r`)αd
k2+j+`−k+r`

` e

+ pδ(k)v(k)− pαd
k−k2
` eδ(k2)v(k2) + p

m2(k)∑
r=0

v(k2 + j + r`+ `)

a(k2 + j + r`)αd
k2+j+`−k+r`

` e

+

m2(k)∑
r=0

w2(k2 + j + r`+ `)

a(k2 + j + r`+ `)

δ(k2 + j + r`)

αd
k2+j+`−k+r`

` e

+p

m2(k)∑
r=0

v2(k2 + j + r`+ `)

a(k2 + j + r`+ `)

δ(k2 + j + r`)

αd
k2+j+`−k+r`

` e

+(α− 1)

m2(k)∑
r=0

w(k2 + j + r`+ `)δ(k2 + j + r`)

+(α− 1)

m2(k)∑
r=0

v(k2 + j + r`+ `)δ(k2 + j + r`) ≤ 0.

Since {a(k)} is increasing, and {δ(k)} decreasing, and on completion of square
yields

m2(k)∑
r=0

[
λQ(k2 + j + r`)(k2 + j + r`− ρ`)(m−2)` δ(k2 + j + r`)

(m− 2)!`m−2αd
k2−k+r`−ρ`+`

`
−me

− (1 + p)α−d
k2−k+r`+j+`

` e

4a(k2 + j + r`+ `)δ(k2 + j + r`+ `)

]
+δ(k)w(k) + pδ(k)v(k) ≤ αd

k−k2
` e (δ(k2)w(k2) + pδ(k2)v(k2)) .

When we take limit supremum as k → ∞ in the last inequality, we arrive at a
contradiction to (3.12). This complete the proof. �
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Theorem 3.5. let δ(k) <∞ and let τ(k) ≥ k. If either (3.2) holds or τ−1(k − ρ`)
is non-decreasing with (3.3) holds and for sufficiently large k1 ≥ k0

k−k0−j−`∑̀
r=0

[
λδ(τ(k2 + j + r`))Q(k0 + j + r`)(k0 + j + r`− ρ`)(m−2)`

(m− 2)!`m−2αd
k2+k+r`−ρ`+`

`
−me

− (1 + p)α−d
k2−k+r`+j+`

` e

4a(τ(k0 + j + r`+ `))δ(τ(k0 + j + r`+ `))

]
=∞,

where 0 < λ < 1 is a constant, then every solution {x(k)} of equation (1.1) is
oscillatory.

Proof. Consider {x(k)} is a non-oscillatory solution of equation (1.1). We shall
prove the case when {x(k)} is positive as the case for {x(k)} negative is similar.
Since {x(k)} is positive there exists an integer k1 ≥ k0 such that x(k) > 0,
x(τ(k)) > 0 and x(k − ρ`) > 0 for all k ≥ k1. From equation (1.1), we see
that {a(k)∆m−1

α(`) z(k)} is decreasing for all k ≥ k1. Then there are two cases for
∆m−1
α(`) z(k), namely, either ∆m−1

α(`) z(k) > 0 eventually or ∆m−1
α(`) z(k) < 0 eventually.

Case(i). Suppose ∆m−1
α(`) z(k) > 0 for all k ≥ k1, the proof is similar to that of case

(i) of Theorem 3.2 and hence the details are omitted.
Case(ii). Suppose ∆m−1

α(`) z(k) < 0 for all k ≥ k1, Then by Lemma 2.4, we have
∆m−2
α(`) z(k) > 0 and ∆α(`)z(k) > 0. Now define γ(k) by

γ(k) =
a(τ(k))∆m−1

α(`) z(τ(k))

∆m−2
α(`) z(k)

for all k ≥ k2 ≥ k1.

Then γ(k) < 0 for all k ≥ k2. Since a(k)∆m−1
α(`) z(k) is decreasing we have

a(τ(k3))∆
m−1
α(`) z(τ(k3)) ≤ a(τ(k))∆m−1

α(`) z(τ(k)) for all k3 ≥ k ≥ k2.

Divide the last inequality by a(τ(k3)) and sum if from k to k3 − `, we obtain

∆m−2
α(`) z(τ(k3))− αd

k3−k
` e∆m−2

α(`) z(τ(k))

≤ a(τ(k))∆m−1
α(`) z(τ(k))

k3−k−j−`∑̀
r=0

αdτ(
k−k3+j+`+r`

`
)e

a(τ(k + j + r`))
.

Letting k3 →∞, we obtain

(3.20) 0 ≤ αd
k3−k
` e∆m−2

α(`) z(τ(k)) ≤ a(τ(k))∆m−2
α(`) z(τ(k))δ(τ(k)).
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Since ∆m−1
α(`) z(k) < 0 and ∆m−1

α(`) z(k) is decreasing and for τ(k) ≥ k, we have

(3.21) ∆m−2
α(`) z(τ(k)) ≤ ∆m−2

α(`) z(k).

Combining the inequalities (3.20), (3.21) and (3.18), we have

−1 ≤ γ(k)δ(τ(k))

αd
k3−k
` e

≤ 0 for all k ≥ k2.

Similarly defining w(k) by

w(k) =
a(k)∆m−1

α(`) z(k)

∆m−2
α(`) z(k)

for all k ≥ k2,

we get

−1 ≤ w(k)δ(τ(k))

αd
k3−k
` e

≤ 0 for all k ≥ k2.

Based on the proof of Theorem 3.4 we obtain (3.19). Multiplying (3.19) by
δ(τ(k)) and then sum it form k2 to k − `, we get

δ(τ(k))w(k)− αd
k−k2
` eδ(τ(k2))w(k2) +

m2(k)∑
r=0

w(k2 + j + r`+ `)

a(τ(k2 + j + r`))αd
k2+j+`−k+r`

` e

+ pδ(τ(k))v(τ(k))− pαd
k−k2
` eδ(τ(k2))v(k2)

+ p

m2(k)∑
r=0

v(k2 + j + r`+ `)

a(τ(k2 + j + r`))αd
k2+j+`−k+r`

` e

+

m2(k)∑
r=0

w2(k2 + j + r`+ `)

a(τ(k2 + j + r`+ `))

δ(τ(k2 + j + r`))

αd
k2+j+`−k+r`

` e

+
λ

(m− 2)!`m−2

m2(k)∑
r=0

Q(k2 + j + r`)(k2 + r`− ρ`)(m−2)` δ(τ(k2 + j + r`))

αd
k2−ρ`+`−k+r`

`
−me

+ p

m2(k)∑
r=0

v2(k2 + j + r`+ `)

a(τ(k2 + j + r`+ `))

δ(τ(k2 + j + r`))

αd
k2+j+`−k+r`

` e

+ (α− 1)

m2(k)∑
r=0

w(k2 + j + r`+ `)δ(τ(k2 + j + r`))

+ (α− 1)

m2(k)∑
r=0

v(k2 + j + r`+ `)δ(τ(k2 + j + r`)) ≤ 0.
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Since {a(k)} increasing, and {δ(k)} decreasing and by the completion of square,
we arrive at

δ(k)w(k) + pδ(k)v(k)

+

m2(k)∑
r=0

[
λQ(k2 + j + r`)(k2 + j + r`− ρ`)(m−2)` δ(τ(k2 + j + r`))

(m− 2)!`m−2αd
k2−k+r`−ρ`+`

`
−me

− (1 + p)α−d
k2−k+r`+j+`

` e

4a(τ(k2 + j + r`+ `))δ(τ(k2 + j + r`+ `))

]

≤ αd
k−k2
` e (δ(τ(k2))w(k2) + pδ(τ(k2))v(k2)) .

By taking limit as k → ∞ in the last inequality and arrive at a result which is
contrary to (3.12). That completes the proof. �
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