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ABSTRACT. The manuscript is devoted to investigation of generalized contrac-
tive and expansive mappings in G-metric spaces. We define the (m, p)-expansive
and (m, p)-contractive mappings in generalized metric spaces, which are exten-
sions of (m, p)-expansive and (m, p)-contractive mappings in metric spaces re-
cently introduced by the forth named author in [16] and [17]. Some of basic
properties of these classes of mappings are given.

1. INTRODUCTION AND PRELIMINARIES

The concept of a generalized metric (or G-metric) space is a generalization of
usual metric spaces and it is introduced by Mustafa and Sims [7], [8] and [9] in
the year 2004. For more results on G-metric spaces and fixed points results, we
refer the interested reader to [4,9–12,15,18].

Definition 1.1. [8] Let X be a non-empty set and let G : X ×X ×X −→ R+ be a
function satisfying the following conditions:

(1) G(x, y, z) = 0 if x = y = z.
(2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y.
(3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z.
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(4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables)
(5) G(x, y, z) ≤ G(x, a, a)+G(a, y, z) for all x, y, z, a ∈ X , (rectangle inequal-

ity).

Then the function G is called a generalized metric or a G-metric on X and (X , G)

is called a G-metric space.

The study of expansive and contractive mappings in generalized metric space
is a very interesting research area in fixed point theory.

Let S be a self mapping on a G-metric (X , G) space. Then S is called G-
expansive if there exists a constant α > 1 such that for all (x, y, z) ∈ X 3, we
have

G(Sx, Sy, Sz) ≥ αG(x, y, z)

(see [11]). S is said to be weakly G-expansive mapping if for all (x, y, z) ∈ X 3,

G(Sx, Sy, Sz) ≥ G(x, y, z).

A self mapping S of G-metric space (X , G) is said to be G-contractive if there
exists a constant β ∈ (0, 1) such that for all (x, y, z) ∈ X 3, we have

G(Sx, Sy, Sz) ≤ βG(x, y, z).

S is said to be weakly G-contractive if for all (x, y, z) ∈ X 3,

G(Sx, Sy, Sz) ≤ G(x, y, z).

Definition 1.2. [6] Let (X , G) be a G-metric space. We say that (xn)n is

(i) a G-Cauchy sequence if, for any ε > 0 there exists n0 ∈ N such that

∀ (n,m, l) ∈ N3 : n,m, l ≥ n0 =⇒ G(xn, xm, xl) < ε.

(ii) a G-convergent sequence to x ∈ X if, for an ε > 0 there exists n0 ∈ N such
that

∀ (n,m) ∈ N2 : n,m ≥ n0 =⇒ G(xn, xm, x) < ε.

(iii) (X , G) is said to be complete if everyG-Cauchy sequence inX isG-convergent
in X .

Definition 1.3. [7] Let (X , G) be a G-metric space. A mapping S : X → X is said
to beG-continuous if

(
Sxn

)
n

isG-convergent to Sx whenever (xn)n isG-convergent
to x.
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In recent work T. Bermúdez et. al. introduced and studied the concept of
(m, q)-isometric maps on metric spaces.

Definition 1.4. [5] Let (E, d) be a metric space. A map S : E −→ E is called an
(m, q)-isometry, ( m ∈ N and q ∈ (0,∞)) if, for all x, y ∈ E∑

0≤k≤m

(−1)k
(
m

k

)
d
(
Sm−kx, Sm−ky

)q
= 0.

Very recently, in papers [16] and [17],the author introduced and studied a
classes of mappings acting on a metric space, called (m, p)-expansive and (m, p)-
hyperexpansive. Given a map S on a metric space (X , d) into itself, set

Θ(p)
m (d, S;x, y) :=

∑
0≤k≤m

(−1)k
(
m

k

)
d
(
Skx, Sky

)p
,∀ x, y ∈ X,

where m ∈ N and p ∈ (0,∞). The map S is said to be (m, p)-expansive if

Θ(p)
m (d, S;x, y) ≤ 0.

When
Θ

(p)
k (d, S;x, y) ≤ 0 for k ∈ {1, · · · ,m},

we say that S is (m, p)-hyperexpansive. Moreover if Θ
(p)
m (d, S;x, y) ≥ 0, we say

that S is (m, p)-contractive and if S is (k, p)-contractive for all positive integer
k ≤ m, the map S is (m, p)-hypercontractive. If Θ

(p)
m (d, S;x, y) = 0 for all x, y,

the map S is said to be an (m, p)-isometry.

2. (m, p)-EXPANSIVE AND (m, p)-CONTRACTIVE MAPPINGS IN G- METRIC SPACE

In the following, let (X , G) be a G-metric space, S : X −→ X be a map, m ∈ N
and p ∈ (0,∞). We define the quantity for all (x, y, z) ∈ X 3 by

P(p)
m (S;x, y, z) :=

∑
0≤k≤m

(−1)k
(
m

k

)
G
(
Skx, Sky, Skz

)p
.

The concept of (m, p)-isometric mappings on G-metric spaces was introduced
and studied by A.M.Ahmadi in [2].

Definition 2.1. [2] S : X −→ X is an (m, p)-G-isometric mapping if and only if
S satisfies

P(p)
m (S;x, y, z) = 0 ∀ (x, y, z) ∈ X 3.



7646 I. OMER AHMED, A. SAROSH, N. AHMAD, AND S. A. O. AHMED MAHMOUD

Remark 2.1. Observe that if S is a self map of a G-metric space (X , G) then

(i) S is an (1, p)-G-isometric if G
(
Sx, Sy, Sz

)
= G

(
x, y, z

)
∀ (x, y, z) ∈ X 3.

(ii) S is an (2, p)-G-isometric if

G
(
S2x, S2y, S2z

)p − 2G
(
Sx, Sy, Sz

)p
+G

(
x, y, z

)p
= 0 ∀ (x, y, z) ∈ X 3.

Some properties of (2, 1)-G-isometric mappings have been proved in [13].
The following definition describes the families of maps we will study in this

paper.

Definition 2.2. Let (X , G) be a G-metric space and let S : X −→ X be a map. We
say that:

(i) S is (m, p)-G-expansive if P(p)
m (S;x, y, z) ≤ 0 ∀ (x, y, z) ∈ X 3;

(ii) S is (m, p)-G-hyperexpansive if P(p)
k (S;x, y, z) ≤ 0 ∀ k = 1, · · · ,m and

(x, y, z) ∈ X 3;

(iii) S is completely p-G-hyperexpansive if P(p)
k (S;x, y, z) ≤ 0 ∀ k ∈ N and

(x, y, z) ∈ X 3.

Definition 2.3. Let (X , G) be a G-metric space and let S : X −→ X be a map. We
say that

(i) S is (m, p)-G-contractive if P(p)
m (S;x, y, z) ≥ 0 ∀ (x, y, z) ∈ X 3;

(ii) S is (m, p)-G-hypercontractive if P(p)
k (S;x, y, z) ≥ 0 ∀ k = 1, 2, · · · ,m

and (x, y, z) ∈ X 3;

(iii) S is completely p-G-hypercontractive if S is (k, p)-G-contractive for all
k ∈ N.

Remark 2.2. (i) For any p ∈ (0,∞), (1, p)-G-expansive mappings S coincides
with weakly expansive; that is,

G(Sx, Sy, Sz) ≥ G(x, y, z) for all (x, y, z) ∈ X 3.

(ii) For any p ∈ (0,∞), (1, p)-G-contractive mappings coincide with weakly
contractive; that is,

G(Sx, Sy, Sz) ≤ G(x, y, z) for all (x, y, z) ∈ X 3.

(iii) The case of (m, p)-G-isometries is the intersection of the class of (m, p)-G-
expansive maps and the class of (m, p)-G-contractive maps.

We consider the following examples of (m, p)-G-expansive mapping and (m, p)-
G-contractive mapping which are not (m, p)-G-isometric mapping.
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Example 1. Let X = [0,∞) be equipped with the G-metric defined as follows:

G
(
x, y, z

)
= |x− y|+ |x− z|+ |y − z| ∀ (x, y, z) ∈ X 3.

Define S : X −→ X by Sx = 3x. Then by straightforward calculation, one can
show that

P(p)
m (S;x, y, z) =

∑
0≤k≤m

(−1)m−k

(
m

k

)
G(Skx, Sky, Skx)p

=
∑

0≤k≤m

(−1)m−k

(
m

k

)(
|Skx− Sky|+ |Skx− Skz|+ |Sky − Skz|

)p

=
∑

0≤k≤m

(−1)m−k

(
m

k

)(
3p
)k(|x− y|+ |x− z|+ |y − z|)p

=
(
1− 3p

)m(|x− y|+ |x− z|+ |y − z|)p

.

Hence, S is a (m, p)-G-expansive map for positive odd integer m and a (m, p)-G-
contractive map for positive even integer m.

Example 2. X = [0, 1] and G(x, y, z) = |x − y| + |y − z| + |z − x| be a G-metric

on X . Define the map S as follows Sx =
1

2
x +

1

4
x2. Clearly SX ⊂ X , and S is

contractive on X , since

G(Sx, Sy, Sz)

= |1
2
x+

1

4
x2 − 1

2
y − 1

4
y2|+ 1

2
x+

1

4
x2 − 1

2
z − 1

4
z2|+ |1

2
z +

1

4
z2 − 1

2
y − 1

4
y2|

≤ 1

2
|x− y|+ 1

4
|x− y||x+ y|+ 1

2
|x− z|+ 1

4
|x− z||x+ z|+ 1

2
|z − y|+ 1

4
|z − y||z + y|

<
1

2
|x− y|+ 1

2
|x− y|+ 1

2
|x− z|+ 1

2
|x− z|+ 1

2
|z − y|+ 1

2
|z − y|

= |x− y|+ |x− z|+ |y − z|.

Thus S is a weakly contractive mapping on X .

The following example shows that, in general, the G-expansiveness of a map
S does not necessarily imply the (m, p)-G-expansiveness of S for m ≥ 2.

Example 3. Consider the usual G-metric G(x, y, z) = |x− y|+ |x− z|+ |y− z| on
R. Let S : (R, G) −→ (R, G) defined by Sx = 3x + 2. Then by a straightforward
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calculation, one can show that

G(Sx, Sy, Sz) = |Sx− Sy|+ |Sx− Sz|+ |Sy − Sz|)

= 3
(
|x− y|+ |x− z|+ |y − z|

)
≥ G(x, y, z)

and

G(S2x, S2y, S2z)p − 2G(Sx, Sy, Sz)p +G(x, y, z)p

= 32pG(x, y, z)p − 2.3pG(x, y, z)p +G(x, y, z)p =
(
3p − 1)2G(x, y, z)p ≥ 0.

Now we conclude that S is (1, p)-G-expansive but it fails to be an (2, p)-G-expansive.
However, S is (2, p)-G-contractive but it is not (1, p)-G-contractive.

In same way, we have the similar example.

Example 4. Let (X , G) be a G-metric space. The map dG : X × X → R+ defined
by

dG(x, y) =

(
G(x, y, y)p +G(y, y, x)p

) 1
p

∀ (x, y) ∈ X 2, p > 0

is a metric on X . Let S is a self map of the G-metric space (X , G)). If S is a
(m, p)-G-expansive (resp. (m, p)-G-contractive), then S is a (m, p)-expansive (resp.
(m, p)-contractive in (X , dG).)

Remark 2.3.

P(p)
m (S;x, y, z) ≤ 0⇐⇒ P(p)

m (S;Snx, Sny, Snz) ≤ 0, ∀ (x, y, z) ∈ X 3, ∀ n ∈ N0.

Remark 2.4.

(i) A self mapping S for a G-metric space (X , G) is (m, p)-G-hyperexpansive if
S is (k, p)-G-expansive for all positive integers k ≤ m, and S is completely
p-G-hyperexpansive if it is (m, p)-G-expansive for all positive integers m.

(ii) A self mapping S for a G-metric space (X , G) is (m, p)-G-hypercontractive
if S is (k, p)-G-contractive for all positive integers k ≤ m, and S is com-
pletely p-G-hypercontractive if it is (m, p)-G-contractive for all positive in-
tegers m.

We let the difference operator Ψ : N −→ R given by the formula

∇Ψ(t) = Ψ(t)−Ψ(t+ 1).
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Observe that the relations

∇0Ψ = Ψ, ∇nΨ = ∇∇n−1Ψ

inductively define ∇n for all n ∈ N.

(1) A real map Ψ on N is said to be completely monotone if (∇nΨ)(t) ≥ 0

for all t ≥ 0 and n ≥ 1.

(2) A real map Ψ on N is said to be completely alternating if (∇nΨ)(t) ≤ 0

for all t ≥ 0 and n ≥ 1.

Proposition 2.1. Let S be a self map of a G-metric space (X , G) and p ∈ (0, ∞).
The following statements hold:

(i) S is an completely- p-G-hyperexpansive if and only if, the map Ψx, y, z :

N→ R defined by Ψx, y, z(n) = G
(
Snx, Sny, Snz

)p for every (x, y, z) ∈ X 3,

is completely alternating.
(ii) S is completely-p-G-hypercontractive if and only if, the map Ψx, y, z : N →

R defined by Ψx, y, z(n) = G
(
Snx, Sny, Snz

)p for every (x, y, z) ∈ X 3, is
completely monotone.

Proof. By [3, Proposition 1.1, Proposition 1.2] we know that a map Φ : N −→ R

is completely alternating if and only if
∑

0≤k≤n

(−1)k
(
n

k

)
Φ(m + k) ≤ 0 ∀ m,n ∈

N and it is completely monotone if and only if
∑

0≤k≤n

(−1)k
(
n

k

)
Φ(m + k) ≥

0 ∀ m,n ∈ N. By Choosing Φ = Ψx, y, z , thus, the statements (i) and (ii)
to be proved follow immediately. �

Proposition 2.2. For a self map S of a G-metric space (X , G), and (x, y, z) ∈ X 3,
the following identity holds:

(2.1) P(p)
m (S;x, y, z) = P(p)

m−1(S;x, y, z)− P(p)
m−1(S;Sx, Sy, Sz).
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Proof. We can use the standard binomial formula
(
m
j

)
=
(
m−1
j

)
+
(
m−1
j−1

)
to prove

the needed formula. Indeed

P(p)
m (S;x, y, z)

=
∑

0≤k≤m

(−1)k
(
m

k

)
G
(
Skx, Sky, Skz

)p
= G

(
x, y, z

)p
+

∑
1≤k≤m−1

(−1)k
(
m

k

)
G
(
Skx, Sky, Skz

)p
+ (−1)mG

(
Smx, Smy, Smz

)p
= G

(
x, y, z

)p
+

∑
1≤k≤m−1

(−1)k
{(

m− 1

k

)
+

(
m− 1

k − 1

)}
G
(
Skx, Sky, Skz

)p
+

+(−1)mG
(
Smx, Smy, Smz

)p
= P(p)

m−1(S;x, y, z)− P(p)
m−1(S;Sx, Sy, Sz).

�

Theorem 2.1. Let S be a self map of a G-metric space (X , G). If S is (m, p)-
G-expansive map for some m ≥ 2 and it is (2, p)-G-hyperexpansive , then S is
(m− 1, p)-G-expansive.

Proof. Since S is a (2, p)-G-hyperexpansive map it follows that for all (x, y, z) ∈
X 3

G
(
x, y, z

)p −G(Sx, Sy Sz)p ≤ 0

and

G
(
x, y, z

)p − 2G
(
Sx, Sy, Sz

)p
+G

(
S2x, S2y, S2z

)p ≤ 0

or equivalently

G
(
S2x, S2y, S2z

)p −G(Sx, Sy, Sz)p ≤ G
(
Sx, Sy, Sz

)p −G(Sx, Sy, Sz)p.
Now, we prove that

(
G
(
Sn+1x, Sn+1y, Sn+1z

)p − G(Snx, Sny, Snz
)p)

n≥0

is con-

vergent. In fact, observe that this real sequence is monotonically non-increasing
and bounded, so that it is convergent. Then there exists a positive constant K
such that

G
(
Sn+1x, Sn+1y, Sn+1z

)p −G(Snx, Sny, Snz
)p → K as n→∞.
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Under the assumption P(p)
m (S;x, y, z) ≤ 0 for all (x, y, z) ∈ X 3 and m ≥ 2 it

follows by using (2.1) that

P(p)
m−1(x, y, z) ≤ P(p)

m−1(S;Sx, Sy, Sz),

By repeating the process we get

P(p)
m−1(S;x, y, z) ≤ P(p)

m−1(S;Snx, Sny, Snz), n ≥ 1.

Now to prove this desired result, it suffices to show that

P(p)
m−1(T ;T nx, T ny, T nz)→ 0 as n→∞.

Here we note that

P(p)
m−1(S;x, y, z) = P(p)

m−2(S;x, y, z)− P(p)
m−2(S;Sx, Sy, Sz),

and therefore

P(p)
m−1(S;Snx, Sny, Snz)

=
∑

0≤j≤m−2

(−1)j
(
m− 2

j

)[
G
(
Sn+jx, Sn+jy, Sn+jz

)p −G(Sn+1+jx, Sn+1+jy, Sn+1+jz
)p]

.

Letting n −→∞ in the preceding equality leads to

P(p)
m−1(S;Snx, Sny, Snz) −→

∑
0≤j≤m−2

(−1)j
(
m− 2

j

)
K = 0.

From which we deduce that P(p)
m−1(T ;x, y, z) ≤ 0 for all (x, y, z) ∈ X 3. Conse-

quently, S is an (m, p)-G-expansive map and the proof is complete. �

The following example shows that Theorem 2.1 is not necessarily true if S is not
(2, p)-hyperexpansive.

Example 5. Let X = R (the real line) and define the map G̃ : X 3 −→ R+ as
follows:

G̃(α, β, γ) =
1

4
|α− β|+ 1

4
|α− γ|+ 1

4
|β − γ| (α, β, γ) ∈ X 3.

Define S : X → X by Sx = 3+2x. Then by a straightforward calculation, we show
that S is a (5, p)-G-expansive but it fails to be a (4, p)-G-expansive.
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Proposition 2.3. Let S be a self maps of a G-metric space (X , G). Assume that S
satisfies

G
(
S2x, S2y, S2z

)
= G

(
Sx, Sy, Sz

)
for all (x, y, z) ∈ X 3.

Then the following properties hold

(i) S is (m, p)-G-expansive for positive integer m if and only if S is weakly
expansive.

(ii) S is (m, p)-G-contractive for positive integer m if and only if,S is weakly
contractive.

Proof. Under the assumption on S, it follows thatG
(
Skx, Sky, Skz

)
= G

(
Sx, Sy, Sz

)
for k = 1, 2, · · · ,m and (x, y, z) ∈ X 3. Thus, we have

P(p)
m (S;x, y, z) = G

(
x, y, z

)p −G(Sx, Sy, Sz)p, ∀ (x, y, z) ∈ X 3.

It is clear from the foregoing that a sufficient and necessary condition for the
sufficient condition for S to be (m, p)-G-expansive (resp. (m, p)-G-contractive)
is that S is weakly expansive (resp. weakly contractive). �

Proposition 2.4. Let S be a self map of a G-metric space (X , G). The following
properties hold

(1) If S is weakly expansive map for which S2 = 0 then, S is (m, p)-G-
expansive.

(2) If S is (m, p)-G- contractive map for which S2 = 0 then , S is weakly
contractive.

Proof. It we assume that S2 = 0 , we get for all (x, y, z) ∈ X 3

P(p)
m (S;x, y, z) = G

(
x, y, z

)p −mG(Sx, Sy, Sz)p ≤ G
(
x, y, z

)p −G(Tx, Ty, Tz)p.
(1) If S is weakly expansive, then

G
(
x, y, z

)
−mG

(
Sx, Sy, Sz

)
≤ 0⇒ P(p)

m (S;x, y, z) ≤ 0.

Thus, we have S is (m, p)-G-expansion.
(2) If P(p)

m (S;x, y, z) ≥ 0, it follows that

P(p)
m (x, y, z) = G

(
x, y, z

)p−mG(Sx, Sy, Sz)p ≥ 0⇒ G
(
x, y, z

)p ≥ G(
(
Sx, Sy, Sz

)p
.

Thus, we have S is weakly contractive.

�
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In the following two theorems, we generalize [16, Proposition 2.8]

Theorem 2.2. Let S be a bijective self map of G-metric space (X , G). If S is (m, p)-
G-expansive map, then the following statements hold

(i) If m is even , then S−1 is (m, p)-G-expansive (resp. G-contractive) map.
(ii) If m is odd , then S−1 is (m, p)-G-contractive (resp. G-expansive) map.

Proof. Under the assumption that P(p)
m (S;x, y, z) ≤ 0

(
resp. ≥ 0

)
∀ (x, y, z) ∈

X 3 we have by a computation stemming essentially from the formula(
m

k

)
=

(
m

m− k

)
; for k = 0, 1, · · · ,m,

P(p)
m (S−1; x, y, z) = (−1)mP(p)

m (S; S−mx, S−my, S−mz).

Therefore for even integer m we have P(p)
m (S−1;x, y, z) ≤ 0

(
resp. ≥ 0

)
.

Hence, S−1 is (m, p)-G-expansive
(
resp. G-contractive

)
, and for odd integer

m P(p)
m (S−1; x, y, z) ≥ 0

(
resp. ≥ 0

)
for all (x, y, z) ∈ X 3. Hence, S−1 is

(m, p)-G-contractive
(
resp. G-contractive

)
. �

Theorem 2.3. Let S be a bijective self map of G-metric space (X,G). If S is (m, p)-
G-contractive map,then the following statements hold

(i) If m is even , then S−1 is (m, p)-G-contractive map.
(ii) If m is odd , then S−1 is (m, p)-G-expansive map.

Proof. The proof is similar to the proof of the theorem above, hence we omit it
here. �

Proposition 2.5. Let S be a map of a G-metric space (X , G). If S is bijective
(2, p)-G-expansive map, then S is (1, p)-G-isometric or G-isometric.

Proof. Since S is a (2, p)-G-expansive, we have

G
(
S2x, S2y, S2z

)p −G(Sx, Sy, Sz)p ≤ G
(
Sx, Sy, Sz

)p −G(Sx, Sy, Sz)p.
So, it must be the case that

G
(
Sk+2x, Sk+2y, Sk+2z

)p −G(Sk+1x, Sk+1y, Sk+1z
)p

≤ G
(
Sk+1x, Sk+1y, Sk+1z

)p −G(Skx, Sky, Skz
)p
, k ≥ 0.
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Hence

G
(
Snx, Sny, Snz)

)p ≤ ∑
1≤k≤n

(
G
(
Skx, Sky, Skz

)p −G(Sk−1x, Sk−1y, Sk−1z
)p)

+G
(
x, y, z

)p
≤ n

(
G
(
Sx, Sy, Sz

)p −G(x, y, z)p)+G
(
x, y, z

)p
≤ nG

(
Sx, Sy, Sz

)p
+ (1− n)G

(
x, y, z

)p
,

which gives,

G
(
Sx, Sy, Sz

)p ≥ (1− n)

n
G
(
x, y, z

)p ∀ (x, y, z) ∈ X 3.

Taking the limit as n→∞, we see that

(2.2) G
(
Sx, Sy, Sz

)p ≥ G
(
x, y, z

)p
, ∀ x, y, z) ∈ X 3

which implies that S is (1, p)-G-expansive or weakly expansive. Moreover, since
S is a bijective (2, p)-G-expansive, then by application of Theorem 2.2, S−1 is
(2, p)-G-expansive. Thus, we have

G
(
S−1u, S−1v, S−1w

)p ≥ G
(
u, v, w

)p ∀ (u, v, w) ∈ X 3.

Thus, we deduce that,

(2.3)
G
(
S−1Sx, S−1Sy, S−1Sz

)p
= G

(
x, y, z

)p ≥ G
(
Sx, Sy, Sz

)p
, ∀ (x, y, z) ∈ X 3

Since S satisfies conditions (2.2) and (2.3), then we have

G
(
Sx, Sy, Sz

)p
= G

(
x, y, z

)p ∀ (x, y, z),∈ X 3.

This means that S is a (1, p)-G-isometric or equivalently an G-isometric map.
This completes the proof of the proposition. �

It is known (see [5]) that a self map S of a metric space (X , d) is power
bounded map if

sup{ d
(
T nx, T ny

)
, n = 1, 2, ...} <∞ for all x, y ∈ X .

In the following definition we extend this notion to a self map of a G-metric
space as follows
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Definition 2.4. Let S be a self map for a G-metric space (X,G) . We say that S is
G-power bounded if

sup{ G
(
Snx, Sny, Snz

)
, n = 1, 2, ...} <∞ for all (x, y, z) ∈ X 3.

The following theorem gives a sufficient condition for an (m, p)-G-expansive
map (resp.(m, p)-G-contractive) to be (m, p)-G-hyperexpansive (resp. resp. (m, p)-
G-hypercontractive).

Theorem 2.4. Let S be a self map of G metric space (X , G). The following state-
ments hold.

(1) If S is (m, p)-G-expansive and G-power bounded, then S is (m, p)-
G–hyperexpansive.

(2) If S is (m, p)-G-contractive and G-power bounded, then S is (m, p)-G-
hypercontractive.

Proof.

(1) It is obvious from the fact that S is (m, p)-G-expansive and (2.1) that

P(p)
m−1(S;x, y, z) ≤ P(p)

m−1(S;Sx, Sy, Sz) ≤ ... ≤ P(p)
m−1(T ;T nx, T ny, T nz).

Using (2.1),we obtain we have

P(p)
m−1(S;Snx, Sny, Snz)

=
∑

0≤k≤m−2

(−1)k
(
m− 2

k

)[
G
(
Sn+kx, Sn+ky, Sn+kz

)p −G(Sn+1+kx, Sn+1+ky, Sn+1+kz
)p︸ ︷︷ ︸

=Qn(x,y,z)

]
.

The condition that S is G-power bounded gives for all (x, y, z) ∈ X 3

the sequence (Qn(x, y, z))n ⊂ R is bounded, therefore has convergent
subsequence (Qnk

(x, y, z))k≥0 whose limit is l ∈ R. We conclude that[
G
(
Snk+jx, Snk+jy, Snk+jz

)p−G(Snk+1+jx, Snk+1+jy, Snk+1+jz
)p]→ l as k →∞.

So we get that

P(p)
m−1(S, S

nkx, Snky, Snkz)→ 0 as k →∞.

This proves that P(p)
m−1(S;x, y, z) ≤ 0 and we can apply Definition 2.2

to obtain that S is (m − 1, p)-G-expansive map. Regarding that S is
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(m−1, p)-G-expansive and G-power bounded, in similar way we can get
P(p)

m−2(x, y, z) ≤ 0 for (x, y, z) ∈ X 3. Analogously, we can conclude that

P(p)
k (S;x, y, z) ≤ 0 for 1 ≤ k ≤ m and (x, y, z) ∈ X 3.

Hence, S is (m, p)-G-hyperexpansive.
(2) Regarding that S is an (m, p)-contractive together (2.1), we observe that

P(p)
m−1(S;x, yz) ≥ P(p)

m−1(S;Sx, Sy, Sz) ≥ · · · ≥ P(p)
m−1(S;Snx, Sny, Snz).

Tanking into account (2.1),we have

P(p)
m−1(S;Snx, Sny, Snx) = P(p)

m−2(S;Snx, Sny, Snz)−P(p)
m−2(S;Sn+1x, Sn+1y, Sn+1z),

and by a routine calculation, one can verify that

P(p)
m−1(S;Snx, Sny, Snz)

=
∑

0≤j≤m−2

(−1)j
(
m− 2

j

)[
G
(
Sn+jx, Sn+jy, Sn+jz

)p −G(Sn+1+jx, Sn+1+jy, Sn+1+jz
)p]

.

Following the line of the proof of the statement (1) one can easily get

P(p)
m−1(S;Snkx, Snky, Snkz)→ 0 as k →∞.

This implies that, P(p)
m−1(x, y, z) ≥ 0 and so that, S is (m−1, p)-contractive.

By repeating this process, we reach the following inequalities
P(p)

k (S;x, y, x) ≥ 0 for k = 1, 2, · · · ,m and (x, y, z) ∈ X 3 which shows
that S is an (m, p)-G-hypercontractive.

�

The following theorem gives a characterization of (3, p)-G-isometric map-
pings. Our inspiration cames form [14].

Theorem 2.5. Let S be a self mapping for a G-metric space (X , G). Then S is an
(3, p)-G-isometric mapping if and only if S satisfies

(2.4) G
(
Snx, Sny, Snz

)p
= G

(
x, y, z

)p
+ nQ1(x, y, z) + n2Q2(x, y, z)

where

Q2(x, y, z) =
1

2

(
G(S2x, S2y, S2z)p − 2G(Sx, Sy, Sz)p +G

(
x, y, z

)p)
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and

Q1(x, y, z) =
1

2

(
−G(S2x, S2y, S2z)p + 4G(Sx, Sy, Sz)p − 3G

(
x, y, z

)p)
.

Proof. We prove the if part of the theorem. Assume that S satisfies (2.4). For
n = 3 we obtain

G
(
S3x, S3y, S3z

)p
= G

(
x, y, z

)p
+ 3Q1(x, y, z) + 9Q2(x, y, z)

= G
(
x, y, z

)p
+

3

2

(
−G(S2x, S2y, S2z)p + 4G(Sx, Sy, Sz)p − 3G

(
x, y, z

)p)
+

9

2

(
G(S2x, S2y, S2z)p − 2G(Sx, Sy, Sz)p +G

(
x, y, z

)p)
= G

(
x, y, z

)p − 3G(S2x, S2y, S2z)p − 3G(Sx, Sy, Sz)p.

Hence, we have

G
(
S3x, S3y, S3z

)p − 3G(S2x, S2y, S2z)p + 3G(Sx, Sy, Sz)p −G
(
x, y, z

)p
= 0,

and so that, S is an (3, p)-G-isometry.

We prove the only if part. Assume that S is an (3, p)-G-isometry. We prove (2.4)
by mathematical induction. For n = 1 it is true. Assume that (2.4) is true for n
and prove it for n+ 1. Indeed, for all (x, y, z) ∈ X 3 we have

G
(
Sn+1x, Sn+1y, Sn+1z

)p
= G

(
SnSx, SnSy, SnSz

)p
= G

(
Sx, Sy, Sz

)p
+ nQ1(Sx, Sy, Sz) + n2Q2(Sx, Sy, Sz)

= G
(
Sx, Sy, Sz

)p
+
n

2

(
−G(S3x, S3y, S3z)p + 4G(S2x, S2y, S2z)p − 3G

(
Sx, Sy, Sz

)p)
+
n2

2

(
G(S3x, S3y, S3z)p − 2G(S2x, Sy, Sz)p +G

(
Sx, Sy, Sz

)p)
=

(
n2 − n

2

)
G
(
S3x, S3y, S3z

)p − (n2 − 2n
)
G
(
S2x, S2y, S2z

)p
+

(
n2 − 3n+ 2

2

)
G
(
Sx, Sy, Sz

)p
.
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Now, using the fact that S is an (3, p)-G-isometry we can obtained

G
(
Sn+1x, Sn+1y, Sn+1z

)p
=

(
n2 − n

2

)(
G
(
x, y, z

)p
+ 3G(S2x, S2y, S2z)p − 3G(Sx, Sy, Sz)p

)
+−

(
n2 − 2n

)
G
(
S2x, S2y, S2z

)p
+

(
n2 − 3n+ 2

2

)
G
(
Sx, Sy, Sz

)p
=

(
n2 + n

2

)
G(S2x, S2y, S2z)p +

(
−2n2 + 2

2

)
G
(
Sx, Sy, Sz

)p
+

(
n2 − n

2

)
G
(
x, y, z

)p
=

(
n2 + n

2

)(
G
(
x, y, z

)p
+ 2Q1(x, y, z) + 4Q2(x, y, z)

)
+

(
−2n2 + 2

2

)(
G
(
x, y, z

)p
+Q1(x, y, z) +Q2(x, y, z)

)
+

(
n2 − n

2

)
G
(
x, y, z

)p
= G

(
x, y, z

)p
+ (n+ 1)Q1(x, y, z) + (n+ 1)2Q2(x, y, z).

�

Proposition 2.6. Let (Xk, Gk) be a G-metric space for k = 1, 2, · · ·n and let Sk be a
self mapping for a the G-metric space (Xk, Gk) ,k = 1, · · · , n be . Put X =

∏
1≤k≤n

Xk

the product space endowed with the product G-metric defined by

G
(
(xk)1≤n, ((yk)1≤n, zk)1≤n

)
=

( ∑
1≤k≤n

Gk(xk, yk, zk
)p)p

, p > 0.

Define the map S = S1 × S2 × · · · × Sd : (X , G) −→ (X , G) as follows

Sx = (S1x1, S2x2, · · · , Snxn). (x1, · · · , xn) ∈ X n.

the following statements hold.

(i) If each Sk is an (m, p)-G-isometric mapping, then S is an (m, p)-G-isometric
mapping.

(ii) If each Sk is an (m, p)-G-expansive mapping, then S is an (m, p)-G-expansive
mapping.

(iii) If each Sk is an (m, p)-G-contractive mapping, then S is an (m, p)-G-
contractive.
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(iv) If Sk is (mk, p)-G-hyperexpansive mapping for 1 ≤ k ≤ n, then S is an
(m, p)-G-expansive where m = min(m1, · · · ,mn.

(v) If Tk is (mk, p)-G-hypercontractive mapping for 1 ≤ k ≤ n, then S is an
(m, p)-G-contractive where m = min(m1, · · · ,mn.

Proof. Let x = (xk)1≤k≤d, y = (yk)1≤k≤d and z = (zk)1≤k≤d ∈ X . We have that

P(p)
m (S;x, y, z) =

∑
0≤j≤m

(−1)j
(
m

j

)
G(Sjx, Sjy, Sjz)p

=
∑

0≤j≤m

(−1)j
(
m

j

)( ∑
1≤k≤d

(
Gk(Sj

kxk, S
j
kyk, S

j
kzk)p)

)

=
∑

1≤k≤n

( ∑
0≤j≤m

(−1)j
(
m

j

)
G(T j

kxk, T
j
kyk, T

j
kzk)p

)
=

∑
1≤k≤n

P(p)
m (Sk, xk, yk, zk)..

The statements (i),(ii) and (iii) follows immediately.

(iv) If Sk is (mk, p)-G-hyperexpansive for k = 1, · · · , n, it follows that Sk is (m, p)-
G-expansive mapping and hence S is (m, p)-G-expansive by statement (ii).

(v) If Sk is (mk, p)-G-hypercontractive for k = 1, · · · , n, it follows that Sk is
(m, p)-G-contractive mapping and hence S is (m, p)-G-contractive by statement
(iii). �

Recall that an bounded operator S : H −→ H (H is a Hilbert space) is called
an m-isometric if S satisfies∑

0≤k≤m

(−1)m−k

(
m

k

)
S∗kSk = 0.

In [1], it was proved that if S is an m-isometric operator , then S is injective ant
its range is closed.

In the following theorem, we generalize the above-mentioned results accord-
ing to (m, p)-G-isometric mapping in compete G-metric space.

Theorem 2.6. Let S be a self mapping of a complete G-metric space (X , G). If
S is G-continuous (m, p)-G-isometric mapping. Then S is injective and R(S) (the
range of S) is G-closed in X .
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Proof. Firstly, we prove that S is injective. Let x, y ∈ X such that Sx = Sy.

Assume that x 6= y. Since S is an (m, p)-G-isometric mapping and Skx = Sky for
k = 1, · · · ,m it follows that

P(p)
m (S, x, y, z) = 0⇔ G

(
x, y, z

)p
+
∑

1≤k≤m

(−1)k
(
m

k

)
G
(
Skx, Skx, Skz

)p
= 0.

By taking x = z we obtain

G
(
x, y, x

)p
+
∑

1≤k≤m

(−1)k
(
m

k

)
G
(
Skx, Skx, Skx

)p︸ ︷︷ ︸
=0

= 0.

So, it must be the case that G
(
x, y, x) = 0. By the second condition of G-metric,

we get a contradiction. Hence, x = y and S is injective map.

We prove thatR(S) is G-closed. Let (xn)n be a sequence in X such that Txn −→
y in (X , G). Since S is G-continuous we have Skxn −→ Sky in (X , G) for k =

1, · · · ,m.. Under the assumption that S is an (m, p)-G-isometric, we get

G
(
xn, xm, xl

)p
= −

∑
1≤k≤m

(−1)k
(
m

k

)
G
(
Skxn, S

kxm, S
kxl
)

for all n,m, l > 0.

It is well know that (Skxn)n are Cauchy sequences in (X , G) for k = 1, 2, · · · ,m.
We obtain that (xn)n is a Cauchy sequence in (X , G). Due to the completeness
of (X , G) , there exists x ∈ X such that (xn)n is G-convergent to x. On the other
hand, using the fact that S is G-continuous, which yields that Sxn −→ Sx as
n→∞. This implies that y = Sx, which yields that R(S) is G-closed. �
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