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SOME REMARKS ON MODIFIED PICARD OPERATORS PRESERVING
SOME EXPONENTIAL FUNCTIONS

GUMRAH UYSAL

ABSTRACT. In the present paper, we investigate the convergence properties of
a class of modified Picard operators in exponential weighted Lebesgue spaces.

1. INTRODUCTION AND THEORETICAL BACKGROUND

Let R = (—o0,+00) and N = {1,2,...} . Consider the following integral opera-
tors

(1.1) (Puf) (z) = g/f (x4+t)edt, z€R, neN
and
(1.2) Whf) (x) = %/f (x+t)e™dt, s €R, neN.

These operators are of type Picard and Gauss-Weierstrass, respectively. Since the
kernel functions of these operators are approximate identities, they have been
the most used operators in approximation theory (see, e.g., [3,9,12,13,17]).
Detailed information about these operators can be found in the monograph [8].
Also, nonlinear counterparts were extensively studied in the monograph [6].
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In [14], the authors considered the Picard-type operators acting on exponen-
tial weighted Lebesgue spaces and proved some approximation theorems con-
cerning rate of convergence of the operators and their higher order derivatives
using suitable modulus of smoothness. Related Voronovskaya and quantitative
Voronovskaya theorems were also presented.

In [1], the authors constructed the following modifications of the operators
of type (1.1) and (1.2):

(1.3) (Prf)(z) = %ﬁ/f (Bp(z)+t)eVldt, 2 e€R, neN, n>n,

and

(1.4) W f)(x) = %/f (o (z) +t) e ™ dt, z € R, n €N,

where 3, () = z — iln(ﬁ) with n > ng, v, (7) = v — 5= and a > 0 is
a fixed real number. Here, n, := [4a] + 1, where [.] denotes floor function. In
the same work various properties of these modifications were given. After this
work, in [5] and [19], some further convergence properties of the operators
of type (1.3) were investigated in exponential weighted Lebesgue spaces. Re-
cently, in [18], the author presented some results concerning the operators of
type (1.4) in exponential weighted Lebesgue spaces. In particular, some char-
acteristic features of m—singular generalization of the operators of type (1.4)
were examined in [16].

In [4], the author constructed the following modification of Picard integral
operators preserving ¢ and ¢?** with a > 0 :
(1.5)

n

(P f) (z) = 4/ea(ﬁmx)+”e““/’f (B2 (x) + 1) ef\mt'dt, r €R, n>ng,

where 3" (x) = = — f,, with 5, = %ln( n ) ,n > n, and n € N. Here, n, :=

n—a?

[a?] + 1, where [.] denotes floor function. In this work, as an extention of the
work [4], we will investigate the convergence properties of the operators of type

(1.5) in exponential weighted Lebesgue spaces.



SOME REMARKS ON MODIFIED PICARD OPERATORS ... 7681
2. MAIN CONCEPTS AND AUXILIARY RESULTS

Let v, (7) := e~ for r € Rwith a > 0 and 1 < p < oo be fixed real num-
bers. Following [7] and also [14], Ly (R) denotes the space of all measurable
functions f for which p—th power of v, f is integrable in the sense of Lebesgue.

1

The norm of f satisfies || f|| .z, := ( [ el f (@) d:c) ' <.
As in [14], for 6 > 0, we use the fol_lowing modulus of smoothness:

[e.o]

2.1) w (f;L‘;; 5) = sup /e_“f‘"x \f (x+h)— f(x)]"dx
Ihl<s

For \,0 > 0, w satisfies (see [10]):
iw (f;LZ;(Sl) <w (f;Lg;(Sg) with 0 < §; < 4§y
il w (f, L; /\5) < (14X erw (f, L;;é)
iii 51i>%1+w (f, Ly; 5) =0.
Now, we quote from [4] the following lemma, consisting of necessary identi-
ties, which will be used in the sequel.

Lemma 2.1. [4] Let g = 1, ¢; = t and e, = t? for t € R be test functions and
a > 0 be fixed. For x € R and sufficiently large n satisfying \/n > a, one has
(Pi*eo) (z) = # tends to 1 as n tends to +o0,

(Preey) (x) = e*@=B @)y <ﬁ:‘* (@) _ (n322)2> tends to x as n tends to 400,

n—a?

and

(Pr*ey) (x) = %n (B2 (2))? (a* — 2a%n + n?) + B2 (2) (4a® — 4an) + 6a2 + 2n)
tends to z? as n tends to +oo.

In the following lemma existence of the operators of type (1.5) in exponential
weighted Lebesgue space L (R) is established.

Lemma 2.2. If f € L5 (R) with fixed 1 < p < co and a > 0, then there holds

/i

Kk alfBn n
1P Fll gy < € & ‘m 11l 2g ) -

where 3, = 1 1n (=), for sufficiently large n € N satisfying /n > 2a.

n—a?
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Proof. Using L}—norm for P, f, we have

1P gy = | [ 1P @) da
00 0o p %
— /eapwl %ﬁ/ea(ﬁz*(x)ﬂ)eawf (B (z) + 1) e~ Voltl gl dax

By the aid of generalized Minkowski inequality [15] and using change of vari-
ables w =z — (3, + t, we get

hSAS

||7D;*f||Lg(R) < €alﬂ”|\/75 /e_ate_\/ﬁtl / }f (B (z) +t) el |p dr | dt

= et [ | |y ee P an ) a

2a|Bn 2a—+/n
< Iy [t
0
_ sl VD
= € /7 — 2a ||f||Lg(R)
provided that \/n > 2a. O

3. MAIN RESULTS

Now, we prove the following result concerning convergence rate using the
modulus of smoothness defined in (2.1).

Theorem 3.1. If f € L{ (R) with fixed 1 < p < oo and a > 0, then for sufficiently
large n satisfying \/n > 2a, and |3,| < \/Lﬁ there holds

wk P 2\/5 n 2al|Bn| . a,i
||Pnf f”Lg(R) S (\/ﬁ_za—i_(\/—_Qa)Q)e 7 Cd(f,Lp, \/ﬁ)

TL2

— -1
(n —a?)

1

1 1g0ey-
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Proof. By virtue of Minkowski inequality, we may write

1P~ llgey

= | [emimrn@ - fapa
- / g 4 / e-alB @0 gar gV (F (3 () +4) — f (2))dt| da
o 00 P >
+ /ffapxl f(z) g/e_“(ﬁm”)”)e”e_ﬁ'tdt —1]| dx
— L+ I

Using generalized Minkowski inequality for /;, we have

b= 7 o 47 et ) 50— 1] 4]
< [ ot ([ o g @) 0 - P y
< Lo (gizgsa) [Jersimein (1 LB sy

< 462“B"w (f; Ly; d) 762a|t6_\/ﬁ|t| (1 + |Z;—| + ‘b(;—n‘) dt
= 462‘16”01 (f:L5:0) 7€2a|t6_\/ﬁ|t| (1 + @) dt
—l—\/Tﬁe%B”lw (f; Ly; (5) 762a|t6_\/ﬁlt%dt

- ]11+112.
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Observe that

\/ﬁ a|bn |/6n| a
]11:m62 1Bl 1+T W(f,Lp,CS)
and
Iy = Vvn 2alnl (f L )
5 (v —2a)
Choosing 6 = w1th v/n > 2a and |3,| < 4, we obtain

h= (J;\Zf(fﬁza)?) o (f & Jlﬁ>

For I, we may write

> " n2 p
L, = e P z) | ——— —1 dx
: / f()<(n_a2)2 )
2
n
< ‘m_l ”fHLg(R)

Hence we get the required result, that is,

g 2y/n n 20| 1
||7Dn f f”Lg(R) < (\/_ (\/_—QCL) ) (f L \/ﬁ>

2
n
n_a)? LA g my

i

g

Bohman-Korovkin theorem is one of the fundamental tools in the theory of
approximation (see [2]). In [11], the authors proved the Korovkin-type theorem
in weighted Lebesgue spaces. The properties of the space Lj (R), which we
consider in this paper, fit the hypotheses of Theorem 1 in [11]. Therefore, we
prove the following result by the aid of indicated theorem.

Theorem 3.2. If f € Lj (R) with fixed 1 < p < oo and a > 0, then there holds
i [P ~ e = 0.

Proof. In view of Lemma 2.2 and Theorem 1 in [11], it is sufficient to show that
the following conditions hold there:

lim |[(Pre;) (z)

n—-+0o

=0withi=0,1,2.

La(R)
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Let : = 0. In view of Lemma 2.1, we have

1
) o | "ae)
. sk _ = ] T o
i P (o) =gy = i { [ | -
2 2
= lim n 2 1' (_) :
n—=+o0 | (n — a?) ap
= 0.
Leti=1.

[(Pre) () — |y ey

o0

*k p
_ / o—aple] | jate—pz (@), ( Pn (5“2) U B
n—a (n — a?)
—00
= /e_aplm| " G (@) — 2a - pdx
n—a \n—a (n—a?)?’
> 2 D%k p 2 2 p 9
< 2p/eap|x| W @) o | 2o P2
(n — a?) (n—a?)”| ap
2 p o 2 2 p 9
< 2% n 5 — 1 /e‘“”"” |z|” dz + 2P a 3| —
(n— ) (n—a)| ap
1 n 2 |P
+22p a (nfaQ) n 3
(-0 | ap
n? P 2an? |7 2
= e | @) T e )+ s
+22p % (nfnaQ) n’ ’ 3
(TL o a2)2 ap)

where I (.) denotes gamma function with

/ ez’ dz = 2 (ap)""TVT (p+ 1).

—00
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In view of above inequality, we easily see that

lim_[[(P5*e1) (2) — 2l ) = 0.

n——+00
Let? = 2.
1(Pi7e2) (@) = |7 g
by 2
= / —(n fa2)4 ((5;* (x)>2 <a4 —92a%n + 712) + ﬁ;* (:L’) (4@3 . 4an) + 6a? + 2n) g2
x e~y
by n? ) P
< 2 [ ot O @ (o 2 ) | el
n—a
P T n2 *ok 3 2 p
+2 (n — a2)4 (Bn (v) (4a - 4an) + 6a” + 2n)
= Al + AQ.

In view of the same considerations as in the case 7 = 1, it is not difficult to see
that Ay — 0 as n — oo. Now, we will deal with A;. If we write 5** (x) in explicit

form, we have

T

n? (a* — 2a*n + n?

(n—a?)’

< 22p )_1

P o0
/|x|2peapx|dx
—o0

[e.@]

p
1., n 2z
/ Eln (n—a2) —;hl

n? (a* — 2a®n + n?)

(n— )’

= All —|—A12.

+2%

n? 1 n 2 4 9 9
m(x—aln(n_a2)> (a —26L TL+TL>—

p

ZL’2

e~ aplzl o

By the same argument used in the case i = 1, we have A5 — 0 as n — co. Now,

it remains to show that A;; — 0 as n — oo. Since

/ [ e~ Pldx = 2 (ap) ™" (1 4 2p),

P
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we have
2.4 2 2 p %
Ay = 2% n”(a” —2a°n + ) -1 /|x|2pe aple] g
(n—a?)*
2044 _ 9 P
= g |20 ) (14 2y
(n —a?)

The result follows, that is,

lim [[(Pres) (z) — 27|

n—-+o0o

Lg(R)

Thus the proof is completed. O
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