ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.9, 6829–6835 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.41

POLYNOMIAL REPRESENTATION OF ORDER-CONGRUENCE GRAPH OF \mathbf{Z}_n

KAMAL JYOTI BARMAN¹ AND KUNTALA PATRA

ABSTRACT. The order-congruence graph of the commutative ring Z_n , denoted by $C_o(Z_n)$ is defined as the graph whose vertices are the elements of the ring Z_n and any two distinct vertices x and y are adjacent whenever $x + y \equiv 0 \pmod{n}$ or $x.y \equiv 0 \pmod{n}$ with $y \neq n - x$, where n is the order of Z_n . For a simple graph G, having $\Delta(G)$ as its maximum degree, the polynomial representation of G, denoted by $P_G(x)$, is a polynomial over Z of the form $P_G(x) = \sum_{i=0}^{\Delta(G)} a_i x^i$, where a_i is the number of vertices in G with degree i for each $i = 0, 1, \ldots, \Delta(G)$. In this paper we establish the polynomial representation of order-congruence graph of Z_n for some particular values of n.

1. INTRODUCTION

A new graph structure associated to a commutative ring Z_n called ordercongruence graph is introduced in [2]. The graph is denoted by $C_o(Z_n)$. In our present paper we establish the polynomial representation of Order-congruence graph of Z_n for $n = p, 2p, 3p, p^2$. We also find the polynomial representation of Line graph of Order-congruence graph of Z_p , $L(C_o(Z_p))$ and a relation between polynomial representation of $C_o(Z_p)$ and $L(C_o(Z_p))$ is also established in this paper. Besides these the relationships between $C_o(Z_n)$ and their union and join are studied. In this paper we also study some properties of the corresponding

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C25, 05C31.

Key words and phrases. Order-congruence graph, Polynomial representation.

polynomial representation of $C_o(Z_n)$ [like whether they are monic, reducible , have constant term etc.].

For further reference see [1,2,3,4,5].

2. PRELIMINARIES

Definition 2.1. Let $x, y \in Z_n$ such that $x \neq y$, if $x + y \equiv 0 \pmod{n}$ then we say x is conjugate to y and y is conjugate to x and the pair (x, y) is known as conjugate pair.

Definition 2.2. Line graph of order-congruence graph of Z_n , $L(C_o(Z_n))$ is the graph with all the edges of $C_o(Z_n)$ as vertices and any two distinct vertices are adjacent if and only if their corresponding edges share a common vertex in the graph $C_o(Z_n)$. We use the notation [x, y] to represent a vertex in $L(C_o(Z_n))$.

Definition 2.3. The polynomial representation of a simple graph G, $P_G(x)$, is a polynomial over Z of the form $P_G(x) = \sum_{i=0}^{\Delta(G)} a_i x^i$, where $\Delta(G)$ is the maximum degree and a_i is the number of vertices in G with degree i for each $i = 0, 1, \ldots, \Delta(G)$.

Definition 2.4. A polynomial having one , two , three and four terms are respectively known as Monomial , Binomial , Trinomial and Quadrinomial.

Definition 2.5. A monic polynomial is a single variable polynomial in which the leading coefficient is equal to 1.

Definition 2.6. A polynomial is said to be reducible if it can be factored into nontrivial polynomials over the same field. Otherwise it is irreducible.

Definition 2.7. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs, the union $G_1 \cup G_2$ is defined as G = (V, E) where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$.

Definition 2.8. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs, the join $G_1 + G_2$ is defined as $G_1 \cup G_2$ together with all the lines joining V_1 with V_2 .

3. MAIN RESULTS

Theorem 3.1. For the graph $G = C_o(Z_n)$,

(i) $P_G(x)$ is always monic for n > 3.

- (ii) $P_G(x)$ never contains a constant term.
- (iii) The degree of $P_G(x)$ is n-1.

 $1, 2, \ldots p - 1$

(iv) $P_G(x)$ is monomial only if n = 2, 3.

Proof. (i). For n > 3, apart from 0 there is no vertex in $C_o(Z_n)$ which is adjacent with all other vertices. i.e. the vertices with highest degree is unique. Thus $P_G(x)$ is always monic for n > 3.

(ii). As $C_o(Z_n)$ is connected $\forall n$, so there is no vertex in $C_o(Z_n)$ whose degree is 0. Hence there is no constant term in polynomial representation of $C_o(Z_n)$.

(iii). In $C_o(Z_n)$, the degree of vertex corresponding to 0 is n-1, which is the maximum degree among all vertices of $C_o(Z_n)$. Hence the degree of $P_G(x)$ is n-1.

(iv). $P_G(x)$ is a monomial \Rightarrow degrees of all the vertices in $C_o(Z_n)$ are equal $\Rightarrow C_o(Z_n)$ is a regular graph $\Rightarrow n = 2, 3$ as for n > 3, $C_o(Z_n)$ will never be a regular graph. Thus $P_G(x)$ is monomial only if n = 2, 3.

Theorem 3.2. The polynomial representation of $C_o(Z_p)$, $P_{C_o(Z_p)}(x) = x^{p-1} + (p-1)x^2$, where p is an odd prime.

Proof. In $C_o(Z_p)$, the vertex corresponding to 0 is adjacent with all the remaining p-1 vertices. i.e. deg(0) = p-1. While for $x \neq 0 \in Z_p$, x is adjacent to p-x and 0 in $C_o(Z_p)$. i.e. deg(x) = 2. Hence there are one vertex with degree p-1 and p-1 vertices with degree 2. So, $P_{C_o(Z_p)}(x) = x^{p-1} + (p-1)x^2$.

Theorem 3.3. The polynomial representation of $C_o(Z_{p^2})$, $P_{C_o(Z_{n^2})}(x) = x^{p^{2-1}} + (p-1)x^{p-1} + p(p-1)x^2$, where p is prime.

Proof. In $C_o(Z_{p^2})$ by definition of Order-congruence graph , $deg(0) = p^2 - 1$ and apart from 0, no other vertex has degree $p^2 - 1$. Now the vertices corresponding to $p, 2p, 3p, \dots, (p-1)p$ are adjacent with each other and 0. Hence there are p-1 vertices with degree p-1. While the remaining vertices of $C_o(Z_{p^2})$,

 $\begin{array}{l} p+1,p+2,\ldots,P+(p-1)\ldots\\ ((p-1)/2)p+1,((p-1)/2)p+2,\ldots,((p-1)/2)p+(p-1)\\ ((p+1)/2)p+1,((p+1)/2)p+2,\ldots,((p+1)/2)p+(p-1)\\ ((p+3)/2)p+1,((p+3)/2)p+2,\ldots,((p+3)/2)p+(p-1)\ldots\\ ((p+(p-2))/2)p+1,((p+(p-2))/2)p+2,\ldots,((p+(p-2))/2)p+(p-1)\\ \text{are adjacent with 0 and their respective conjugate only.} \end{array}$

Hence degree of all of them are 2. Thus the number of vertices with degree 2 is ((p + (p - 2))/2 + 1)(p - 1) = p(p - 1). Therefore, $P_{C_o(Z_{p^2})}(x) = x^{p^{2-1}} + (p - 1)x^{p-1} + p(p - 1)x^2$, where p is prime.

Corollary 3.1. The polynomial representation of $C_o(Z_{p^2})$ is a Trinomial provided $p \neq 3$.

Proof. The result follows from Theorem 3.3 immediately.

Corollary 3.2. Let $G = C_o(Z_p)$ and $H = C_o(Z_{p^2})$, where p is an odd-prime, then the polynomial representation of

(i)
$$G \cup H$$
 is $x^{p^2-1} + px^{p-1} + (p^2-1)x^2$.
(ii) $G + H$ is $2x^{p^2+p-1} + (p-1)x^{p^2+2} + (p-1)x^{2p-1} + p(p-1)x^{P+2}$.

Proof. By Theorem 3.2 , $P_{C_o(Z_p)}(x) = x^{p-1} + (p-1)x^2$, where p is an odd prime. By Theorem 3.3 , $P_{C_o(Z_{p^2})}(x) = x^{p^{2-1}} + (p-1)x^{p-1} + p(p-1)x^2$, where p is prime. Therefore :

(i).
$$P_{G\cup H}(x) = x^{p-1} + (p-1)x^2 + x^{p^2-1} + (p-1)x^{p-1} + p(p-1)x^2$$

= $x^{p^2-1} + (1+p-1)x^{p-1} + ((p-1)+p(p-1))x^2 = x^{p^2-1} + px^{p-1} + (p^2-1)x^2$.

(ii). In G + H, every vertices of G is adjacent with every vertices of H. Hence the degree of each of the vertices of G is increased by p^2 and that of H is increased by p. Thus, $P_{G+H}(x) = x^{p-1+p^2} + (p-1)x^{2+p^2} + x^{p^2-1+p} + (p-1)x^{p-1+p} + p(p-1)x^{2+p} = 2x^{p^2+p-1} + (p-1)x^{p^2+2} + (p-1)x^{2p-1} + p(p-1)x^{P+2}$.

Theorem 3.4. The polynomial representation of $L(C_o(Z_p))$, $P_{L(C_o(Z_p))}(x) = (p-1)x^{p-1} + ((p-1)/2)x^2$, where p is an odd prime.

Proof. In $L(C_o(Z_p))$, the vertices $[0,1], [0,2], \ldots, [0, p-1]$ induces a complete subgraph K_{p-1} . Thus the vertices of the form [0,y] are adjacent with the remaining p-2 vertices of the complete graph K_{p-1} . Moreover [0,y] is also adjacent to [x,y], where (x,y) is conjugate pair in $C_o(Z_p)$. Hence deg([0,y]) = p-1. While the vertices of the form [x,y], where (x,y) is conjugate pair in $C_o(Z_p)$ is adjacent only with [0,x] and [0,y]. Hence deg([x,y]) = 2.

As there are (p-1)/2 conjugate pairs present in $C_o(Z_p)$, so there are (p-1)/2vertices of the form [x, y] present in $L(C_o(Z_p))$. Thus $P_{L(C_o(Z_p))}(x) = (p-1)x^{p-1} + ((p-1)/2)x^2$, where p is an odd prime.

Corollary 3.3. The degree of the polynomial representation of $C_o(Z_p)$ and $L(C_o(Z_p))$, where p is an odd prime are equal.

Proof. By Theorem 3.2 , $P_{C_o(Z_p)}(x) = x^{p-1} + (p-1)x^2$ and by Theorem 3.4 , $P_{L(C_o(Z_p))}(x) = (p-1)x^{p-1} + ((p-1)/2)x^2$, where p is an odd prime.

 \Rightarrow degree of both $P_{C_o(Z_p)}(x)$ and $P_{L(C_o(Z_p))}(x)$ is p-1.

Hence degree of $P_{C_o(Z_p)}(x)$ = degree of $P_{L(C_o(Z_p))}(x)$.

Theorem 3.5. The polynomial representation of $C_o(Z_p)$ and $L(C_o(Z_p))$, where p is an odd-prime are equal if and only if p = 3.

Proof. For p = 3, $C_o(Z_p)$ becomes a cycle of length 3. As we know the line graph of cycle of length n is also a cycle of length n. So $L(C_o(Z_p))$ is also a cycle of length 3. Thus, $P_{C_o(Z_p)}(x) = P_{L(C_o(Z_p))}(x)$, when p = 3.

Conversely, suppose $P_{C_o(Z_p)}(x) = P_{L(C_o(Z_p))}(x) \Rightarrow$ Number of vertices of any possible degree in $C_o(Z_p) =$ Number of vertices of that degree in $L(C_o(Z_p)) \Rightarrow$ Total number of vertices in $C_o(Z_p) =$ Total number of vertices in $L(C_o(Z_p)) \Rightarrow$ $p = p - 1 + (p - 1)/2 \Rightarrow p = 3.$

Theorem 3.6. Let $G = C_o(Z_n)$, $H = C_o(Z_n) \cup C_o(Z_n) \cup \cup C_o(Z_n)$ (*m* times) and $I = C_o(Z_n) + C_o(Z_n) + + C_o(Z_n)$ (*m* times). Then

(i) $P_H(x) = mP_G(x)$. (ii) $P_I(x) = mx^{(m-1)n}P_G(x)$.

Proof. (i). In $C_o(Z_n) \cup C_o(Z_n)$, the number of vertices of each possible degree of $C_o(Z_n)$ becomes 2-times. Thus for , $H = C_o(Z_n) \cup C_o(Z_n) \cup \ldots \cup C_o(Z_n)$ (*m* times) the number of vertices of each possible degree of $C_o(Z_n)$ becomes *m*-times. Hence $P_H(x) = mP_G(x)$.

(ii). In $I_1 = C_o(Z_n) + C_o(Z_n)$, the number of vertices of each possible degree of $C_o(Z_n)$ becomes double such that the degree of each vertices is increased by n. Therefore $P_{I_1}(x) = 2x^n P_G(x)$.

In $I_2 = C_o(Z_n) + C_o(Z_n) + C_o(Z_n)$, the number of vertices of each possible degree of $C_o(Z_n)$ becomes triple such that the degree of each vertices is increased by 2n. Therefore $P_{I_2}(x) = 3x^{2n}P_G(x)$.

In this way, for $I = C_o(Z_n) + C_o(Z_n) + \dots + C_o(Z_n)$ (*m* times), the number of vertices of each possible degree of $C_o(Z_n)$ becomes *m* times such that the degree of each vertices is increased by (m-1)n. Hence $P_I(x) = mx^{(m-1)n}P_G(x)$.

Theorem 3.7. The polynomial representation of $C_o(Z_{2p})$, $P_{C_o(Z_{2p})}(x) = x^{2p-1} + x^p + (p-1)x^3 + (p-1)x^2$, where p is an odd prime.

K. J. BARMAN AND K. PATRA

Proof. In $C_o(Z_{2p})$, by definition of order-congruence graph , deg(0) = 2p - 1. The vertex corresponding to p is adjacent with the vertices corresponding to $2, 4, \ldots, p - 1$ and their conjugate pairs $2p - 2, 2p - 4, \ldots, p + 1$. Moreover it is adjacent to 0 also. Hence deg(p) = 2((p-1)/2) + 1 = p.

It follows that the vertices corresponding to $2, 4, \ldots, p-1, 2p-2, 2p-4, \ldots, p+1$ are adjacent with 0, p and their respective conjugate only. Hence degree of all of them are 3. Thus the number of vertices having degree 3 equal to p-1.

Also the vertices corresponding to 1, 3, ..., p - 2, 2p - 1, 2p - 3, ..., p + 2 are adjacent with their respective conjugate and 0 only. Hence degree of all of them are 2. Thus the number of vertices having degree 2 equal to p - 1.

Therefore $P_{C_o(Z_{2p})}(x) = x^{2p-1} + x^p + (p-1)x^3 + (p-1)x^2$, where *p* is an odd prime.

Theorem 3.8. The polynomial representation of $C_o(Z_{3p})$, $P_{C_o(Z_{3p})}(x) = x^{3p-1} + 2x^{p+1} + (p-1)x^4 + 2(p-1)x^2$, where $p \neq 3$ is an odd prime.

Proof. In $C_o(Z_{3p})$, by definition of order-congruence graph, deg(0) = 3p - 1.

The vertices corresponding to p and 2p are adjacent with $3, 6, \ldots, 3((p-1)/2)$ and their conjugate $3p-3, 3p-6, \ldots, 3p-3((p-1)/2) = 3((p+1)/2)$. Moreover the vertices corresponding to p and 2p are also adjacent with each other and 0. Hence deg(p) = deg(2p) = 2((p-1)/2) + 2 = p + 1.

It follows that the vertices corresponding to $3, 6, \ldots, 3((p-1)/2), 3p-3, 3p-6, \ldots, 3p-3((p-1)/2) = 3((p+1)/2)$ are adjacent with 0, p, 2p and their respective conjugate only. Hence the degree of these p-1 vertices is 4.

While the remaining 3p - (p - 1 + 3) = 2(p - 1) vertices [excluding 0, p, 2p and multiple of 3] are adjacent with 0 and their respective conjugate only. Hence the degree of these 2(p - 1) vertices is 2.

Therefore $P_{C_o(Z_{3p})}(x) = x^{3p-1} + 2x^{p+1} + (p-1)x^4 + 2(p-1)x^2$, where $p \neq 3$ is an odd prime.

Corollary 3.4. The polynomial representation of $C_o(Z_{2p})$ and $C_o(Z_{3p})$, where $p \neq 3$ is an odd prime are both Quadrinomial.

Proof. The result follows from Theorem 3.7 and Theorem 3.8 immediately. \Box

4. CONCLUSION

From the above discussions it has been observed that the polynomial representation of $C_o(Z_n)$ is monic for n > 3 and has no constant term with degree n-1. For $n = p, p^2, 2p, 3p$ the polynomial representation of $C_o(Z_n)$ is reducible over Z. From Theorem 3.2 and 3.4, it follows that the polynomial representation of $C_o(Z_p)$ and $L(C_o(Z_p))$ are both binomial provided $p \neq 3$ is an odd-prime. Also for an odd-prime p the degree of the polynomial representation of $C_o(Z_p)$ and its line graph are equal. Moreover $P_{C_o(Z_p)}(x) = P_{L(C_o(Z_p))}(x)$, if and only if p = 3.

REFERENCES

- [1] D. F. ANDERSON, P. S. LIVINGSTON: The zero-divisor graph of commutative ring, J. Algebra, 217(2) (1999), 434 447.
- [2] K. J. BARMAN, K. PATRA: Some aspects of order-congruence graph of the commutative ring Z_n , Bull. Cal. Math. Soc., **111**(2) (2019), 165 172.
- [3] C. GODSIL, G. ROYLE: Algebraic Graph Theory, Springer-Verlag, 2001.
- [4] F. HARARY: Graph Theory, Addison-Wesley, 1969.
- [5] S. PALAHANG JR, J. M. ABBAS: Polynomial representation of some $PG(Z_n)$, Adv. and App. in Discrete Math., **22**(2) (2019), 117 126.

DEPARTMENT OF MATHEMATICS GAUHATI UNIVERSITY GUWAHATI-781014, ASSAM, INDIA *Email address*: kamaljyotibarman@yahoo.in

DEPARTMENT OF MATHEMATICS GAUHATI UNIVERSITY GUWAHATI-781014, ASSAM, INDIA Email address: kuntalapatra@gmail.com