
ADV MATH
SCI JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.9, 6971–6980
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.9.46

ALGORITHM FOR CONSTRUCTING DETERMINISTIC FINITE AUTOMATA
DIRECTLY FROM REGULAR EXPRESSIONS FOR PATTERN RECOGNITION

RELATED PROBLEMS

M. P. RAJAKUMAR1, J. RAMYA, R. SONIA, AND B. UMA MAHESWARI

ABSTRACT. Theory of computation, a division of theoretical computer science
deals with how proficiently problems can be explained on a model of compu-
tation, by means of an algorithm. Automata theory play a key part in theory
of computation, design of compiler and formal verification. An automaton can
be designed to perform a variety of tasks related to various domains of human
life such as language recognition process. The automata theory has three main
classes that include the deterministic finite automata (DFA), nondeterministic
finite automata (NFA) and the nondeterministic finite automata with Epsilon
(NFA- E). In this paper a novel algorithm for constructing DFA directly from
regular expressions (REs) for pattern recognition problems are proposed. This
algorithm can be extended to accept more input variables with minor modifica-
tions.

1. INTRODUCTION

Theory of computation has three branches, namely computational complex-
ity theory, computability theory and automaton theory. Automata theory is the
study of abstract machines and automata. Finite state automata, pushdown
automata and Turing machine are well known type of automata theory. This au-
tomaton consists of states (symbolized by circles) and transitions (represented

1corresponding author
2010 Mathematics Subject Classification. 68Q45.
Key words and phrases. Theory of computation, automata theory, deterministic finite au-

tomata, regular expression, pattern recognition problems.
6971

6972 M. P. RAJAKUMAR, J. RAMYA, R. SONIA, AND B. UMA MAHESWARI

by arrows). Automaton takes two arguments namely the state and input symbol
and produces state as the output function, agreeing to its transition function.

Finite state machine has three main classes that include the DFA, NFA and
the NFA- E . Representing the transitions of DFA can be done using transition
diagram and/or transition table. In a transition diagram, if (p, a) = q then
the arrow goes from the vertex which corresponds to state p, to the vertex that
corresponds to state q labeled a. In a transition table, rows corresponds to
states and columns correspond to inputs. An entry corresponds to next states to
indicate the transition of DFA.

The article is organized as follows. Section 2 provides the applications of
Automata Theory and related works. We establish representation by concisely
paraphrasing textbook definitions of automata in Section 3. Then, in Section
4, we introduce the proposed algorithm for constructing DFA that involves only
two input variables. Final part of section 4 extended the proposed algorithm for
construction pattern matching algorithm for 3 variables with minor modification
in the original algorithm followed by the transition table involving four input
symbols. Section 5 concludes the work.

2. RELATED WORKS

Finite Automata along with transducers have many interesting applications
in image manipulation, image recognition and in language processing, etc. [1,
2, 3, 4, 5]. It can be also used in both loss and lossless compression [6]. The
concept of automata is used to identify the learning disability of the students
and provide the solutions to deal the disability [7]. They can be used in software
testing as a tracking system [8]. They are very good in splicing system work [9].

The minimal DFA is constructed from RE using set of grammar rules [10]. Al-
gorithm is developed to construct minimal DFA based on backward information
[11]. To accelerate the generation of DFA, two different data structures were
developed [12]. Even simple DFA constructed using some Algorithmic design
techniques such as divide and conquer [13] and incremental algorithm [14].
Multidimensional FA based RE matching algorithm were proposed [15].

ALGORITHM FOR CONSTRUCTING DETERMINISTIC FINITE AUTOMATA. . . 6973

3. NOTATIONS AND BASIC DEFINITIONS

Definition 3.1 (Deterministic Finite Automata (DFA)). Formally a DFA consists
of 5-tuples M = (Q, Σ, δ, q0, F) where finite set of states (Q), finite set of input
symbols called alphabet (Σ), transition function δ defined as: Q X Σ � Q, initial
state (q0 ∈ Q), set of accepting states (F ⊆ Q) .

Definition 3.2 (Extended transition function of DFA). For DFA, M = (Q, Σ, δ,
q0, F) the transition function is extended as δ: Q X Σ*� Q and is defined as follows.

• For any state q of Q δ(q, E) = q
• For any state q of Q, any string x ∈ Σ* with ‘a’ as the last symbol of x and

a ∈ Σ , then δ(q, xa)= δ(δ(q, x),a).

Definition 3.3 (Languages accepted by DFA). The language accepted by DFA M
= (Q, Σ, δ, q0, F) is the set of strings Σ accepted by M i.e., L (M) = {w ∈ Σ* / δ
(q0, w) is in F}.

Definition 3.4 (Nondeterministic Finite Automata (NFA)). Same as DFA except
that the transition function δ defined as: Q X Σ� 2Q .

Definition 3.5 (Regular Expression). The languages acknowledged by finite au-
tomata are straight forwardly termed by simple expression called regular expres-
sion.

4. PROPOSED METHOD

Although it is easier to check the participation in DFA, constructing DFA is
more challenging task compared to NFA since in DFA state transition is lim-
ited it cannot use empty string transition. For the RE containing strings of a’s
and b’s that starting with(a + b)∗ followed by aa, ab, ba or bb that is (a + b)∗aa,

(a+ b)∗bb, (a+ b)∗ab, (a+ b)∗ba construction of NFA is easy. This is shown in the
following Figure 1.

Likewise constructing DFA that starts with aa, bb, ab and ba followed by
(a+b)* looks easy (Figure 2) since there is a restriction in only initial part of
the string whereas construction of DFA to accept set of all string of a’s and b’s
and end with ab, ba, aa or bb looks difficult.

6974 M. P. RAJAKUMAR, J. RAMYA, R. SONIA, AND B. UMA MAHESWARI

FIGURE 1. NFA for the RE (a+ b)∗aa, (a+ b)∗bb, (a+ b)∗ab, (a+ b)∗ba

FIGURE 2. DFA for the RE aa(a+ b)∗, bb(a+ b)∗, ab(a+ b)∗, ba(a+ b)∗

The proposed method provides simple algorithm for the problem that involve
pattern recognition. i.e. it constructs DFA for a given RE consists of strings of
a’s and b’s and end with aa, bb, ab or ba. The procedure for constructing DFA is
given in Algorithm 1. First construct the skeleton of the DFA. For this we have
to identify the minimum length string accepted by the given RE. Then identify
the finite set of alphabets for the DFA. For example, for the problem of DFA to
accept the strings of a’s, b’s and c’s having atleast one b and one c , the minimum
string is b,c and the finite set of input alphabet is a, b,c.

Algorithm 1 : Construction of DFA for 2 input symbols

Input: RE (strings of a’s and b’s and end with aa, bb, ab or ba)
Output: The corresponding DFA.

Method

1.Base case: Construct the skeleton of the DFA by considering the minimum
length of string.

2.Categorization

ALGORITHM FOR CONSTRUCTING DETERMINISTIC FINITE AUTOMATA. . . 6975

• Categorization of transitions: Categorize the transitions into defined transi-
tions(DI) and not defined transition(NDI) in the base case.
• Categorization of states: Categorize the states into start state, intermediate

state and accepting or final state from the skeleton of the DFA.
• Categorization of input symbols: Categorize the input symbol into ending

input symbol (EIS) and non-ending input symbol (NIS) from the skeleton of
the DFA.

3.Transition rules: (for 2 input alphabets)

• If defined transitions contain same input symbol
• Mark the following transitions on NIS
• From start state to start state (self-loop)
• From intermediate state to start state
• From final state to start state
• Mark the following transitions on EIS
• From final state to final state (self-loop)
• else (if defined transitions contain different input symbol)
• Mark the following transitions on NIS
• From intermediate state to intermediate state
• From final state to intermediate state
• Mark the following transitions on EIS
• From start state to start state (self-loop)
• From final state to start state

Next, classification is done based on transitions δ, states Q and input sym-
bols Σ. The transitions is classified into two types namely DI and NDI. The DI
contains the transitions defined in the skeleton of DFA and NDI can be easily
identified by considering the number of states and number of input symbols.
For example, the DI for the above example is δ (q0, b) =q1, δ (q1, c) =q2 and NDI
are δ (q0, a), δ (q0, c),δ (q1, a), δ (q1, b), δ (q2, a), δ (q2, b) and δ (q2, c). States
are categorized into start state, intermediate state and accepting or final state.
Here start state will be qo, intermediate state is q1 and set of accepting state is q2.
Categorization also done based on ending input symbol (EIS) and non-ending
input symbol (NIS). EIS is the input symbol that ends with the final state and
NIS is the remaining input symbols. For this case, EIS is c and NIS is a and b.

6976 M. P. RAJAKUMAR, J. RAMYA, R. SONIA, AND B. UMA MAHESWARI

Transitions rules are framed based on the equivalence between DI contains
equal symbol are not. If the DI contain the same input symbol then mark the
transition on NIS from all states to start state and on EIS from final state to final
state. If the DI contain the different input symbol then mark the transition on
NIS from intermediate and final state to intermediate state and on EIS from start
and final state to start state. Table 1 shows the construction steps of DFA from
RE for all four possibilities.

RE (a+b)*aa (a+b)*bb (a+b)*ab (a+b)*ba

Skeleton
of RE
DI δ(q0,a)=q1 δ(q0,b)=q1 δ(q0,a)=q1 δ(q0,b)=q1

δ(q1,a)=q2 δ(q1,b)=q2 δ(q1,b)=q2 δ(q1,a)=q2

NDI δ(q0,b), δ(q1,b) δ(q0,a), δ(q1,a) δ(q0,b), δ(q1,a) δ(q0,a), δ(q1,b)
δ(q2,a), δ(q2,b) δ(q2,a), δ(q2,b) δ(q2,a), δ(q2,b) δ(q2,a), δ(q2,b)

Start q0 q0 q0 q0
Intermdiate q1 q1 q1 q1
Final q2 q2 q2 q2

EIS a b b a
NIS b a a b
Transition δ(q0,b)=q0 δ(q0,a)=q0 δ(q1,a)=q1 δ(q1,b)=q1
on NIS δ(q1,b)=q0 δ(q0,a)=q0 δ(q2,a)=q1 δ(q2,b)=q1

δ(q2,b)=q0 δ(q0,a)=q0
Transition δ(q2,a)=q2 δ(q2,b)=q2 δ(q0,b)=q0 δ(q0,a)=q0
on EIS δ(q2,b)=q0 δ(q2,a)=q0

TABLE 1. Construction steps of DFA

The final DFA for the RE constructed based on the above algorithm is shown
in Figure 3.

This RE to DFA conversion algorithm can be extended to three input variables
involving a, b and c given in Algorithm 2. In this case there will be minor
changes in the transition rules for DI that contain same input symbols and DI
contains different symbols. For the DI containing the same input symbol, instead

ALGORITHM FOR CONSTRUCTING DETERMINISTIC FINITE AUTOMATA. . . 6977

FIGURE 3. DFA for the regular expression (a + b) ∗ aa, (a + b) ∗
bb, (a+ b) ∗ ab, (a+ b) ∗ ba

of one NIS there will be two NIS namely NIS1 and NIS2 and two intermediate
states namely intermediate state1 and intermediate state2 . For the case two,
mark the transition on NIS1 from all states (except start state) to intermediate
state1, on NIS2 from all states (except intermediate state1) to start state and on
EIS from all states (except intermediate state2) to final state.

Algorithm 2 : Construction of DFA for 3 input symbols

If defined transitions contain same input symbol

• Mark the following transitions on NIS1 and NIS2

• From start state to start state (self-loop)
• From intermediates state to start state
• From final state to start state
• Mark the following transitions on EIS
• From final state to final state (self-loop)
• else if
• Defined transitions contain different input symbol
• Mark the following transitions on NIS1

• From intermediate state1 to intermediate state1
• From intermediate state2 to intermediate state1
• From final state to intermediate state1
• Mark the following transitions on NIS2

• From start state to start state
• From intermediate state2 to start state
• From final state to start state
• Mark the following transitions on EIS

6978 M. P. RAJAKUMAR, J. RAMYA, R. SONIA, AND B. UMA MAHESWARI

• From start state to start state (self-loop)
• From intermediate state1 to start state
• From final state to start state

If there are ‘n’ input symbol then there will be ‘n’ DI and n2 NDI. So the total
number of transitions for ‘n’ input symbol is n+n2. The transitions for the RE
involving 4 input symbol is shown in the following transition table 2 and 3.
In general, for ‘n’ input symbol there will be ‘n-1’ NIS (namely NIS1 , NIS2 ..
NISn − 1) and one EIS will be available. All ‘n-1’ NIS has the same property for
DI that contain the same symbol. All states (Starting state, Intermediate states
and final state) has transitions to starting state on these NISn − 1 for DI that
contain different input symbol, all states except starting state has transitions on
NIS1 to starting, state, the same symbol and n2 NDI. So the total number of
transitions for ‘n’ input symbol is n+n2.

Input NIS1 , NIS2 and NIS3 EIS

States SS IS1 IS2 IS3 FS SS IS1 IS2 IS3 FS
SS X

IS1 X

IS2 X

IS3 X

FS X X

TABLE 2. Transition table with DI contain same symbol

5. CONCLUSION

In this paper we established that, for a pattern recognition problem it is possi-
ble to build least DFA directly from RE, that is, without the intermediate lengthy
chain conversion step of RE to NFA with epsilon, NFA with epsilon to NFA and
NFA to DFA using predefined transition rules for which involves only 2 input
symbols a’s and b’s. We also showed that construction algorithm can be ex-
tended to accept three input symbols a’s, b’s and c’s with no change in the tran-
sition rules for DI that contain same input symbols and require minimal changes

ALGORITHM FOR CONSTRUCTING DETERMINISTIC FINITE AUTOMATA. . . 6979

Input NIS1 NIS2 NIS3 EIS
States SS IS1 IS2 IS3 FS SS IS1 IS2 IS3 FS SS IS1 IS2 IS3 FS SS IS1 IS2 IS3 FS

SS X X X

IS1 X X X

IS2 X X

IS2 X X X

FS X X X X

TABLE 3. Transition table with DI contain different symbol

in the transition rules for transitions that is not defined. Using this algorithm it
is also possible to design DFA to accept strings of a’s and b’s which do not end
with the string ab, ba, aa and bb. In future this algorithm can be extended to
accept strings of input symbols to accept the substring related problems. This
algorithm can be used as base for other problems such as divisible by k problems
and module k counter problems.

REFERENCES

[1] M. MINDEK, M. BURDA: Image storage, indexing and recognition with finite state au-
tomata, International Journal of Computer Science, 33(1) (2007), 1-5.

[2] F. KATRITZE, W. MERZENICH, M. THOMAS: Enhancement of partitioning techniques for
Image Compression using weighted finite automata, Theoretical Computer Science, 313(1)
(2004), 133-143.

[3] S. BADER, S. HOLLDOBLER, A. SCALZITTI: Semiring Artifial Neural Networks and
weighted Automata – And an application to Digital Image Encoding, Lecture Notes in Com-
puter Science, Springer – verlag, Berlin, 32-38(1) (2004), 281-294.

[4] J. KARRI: Image processing using Finite Automata, Studies in Computational Intelligence,
25 (2006), 171-208.

[5] Y. COTEN-SYGAI, S. WINTNER: Finite-state Registered Automata and their uses in Natural
languages, Conference Proceedings of Finite-State methods and Natural language process-
ing, (2005), 43-45.

[6] X. MA, H. CHEN: Compression method based on Generalized Finite Automata, Conference
on Audio, Language an Image processing, (2008), 1688-1692.

[7] S. A. ALI, S. SOOMRO, A. G. MERIN, A. BAQI: Implementation of Automata theory to
improve the learning disability, Sindh university Research Journal., 1 (2013), 193-196.

6980 M. P. RAJAKUMAR, J. RAMYA, R. SONIA, AND B. UMA MAHESWARI

[8] T. E. SHUGLA, W. A. IVANOV, N. S. VAGARINA: Developing a software system for auto-
mate based code generation,, Programming and Computer Software, 42 (2016), 167-173.

[9] S. H. KHAIRUDDIN, M. A. AHMAD, A. ADZHAR: Splicing System in Automata Theory:
A Review, Journal of Physics Conference Series, 1336 (2019), 1-11.

[10] S. BHARGAVA, G. N. PUROHIT: Construction of a Minimal Deterministic Finite Au-
tomation for a Regular Expression, International Journal of Computer Applications, 15(4)
(2011), 16-17.

[11] D. LIV, Z. HUANG, Y. ZHANG, X. GUO, S. SU: Efficient Deterministic Finite Automata
minimization Backward depth Information, Plos One, 11(11) (2016), 1-17.

[12] C. XU, J.SU, SHUHUICHEN: Efficient Exploring Efficient NFA data structures to Accelerate
DFA generation, Conference on Cryptography, Security and Privacy, (2018), 56-61.

[13] D. D. RUIKAR, R. S. HEGADI: Simple DFA Construction Algorithm using Divide and Con-
quer Approach, Lecture Notes in Networks and Systems, 43 (2018), 245-255.

[14] C. CAMPEANO, A. PAUN, J. R. SMITH: An Incremental Algorithm for Constructing mini-
mal Deterministic finite cover Automata, Lecture Notes in Computer Science, 3845 (2005),
90-103.

[15] Y. GONG, G. LIU: Image A novel regular expression matching algorithm based on multi-
dimensional finite Automata, Conference on high performance switching and Routing,
(2014), 90-97.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ST. JOSEPH’S COLLEGE OF ENGINEERING

CHENNAI - 600119 TAMILNADU, INDIA

Email address: rajranjhu@gmail.com

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ST. JOSEPH’S COLLEGE OF ENGINEERING

CHENNAI - 600119 TAMILNADU, INDIA

Email address: ramsharsha@gmail.com

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

JEPPIAAR SRR ENGINEERING COLLEGE

CHENNAI - 600119 TAMILNADU, INDIA

Email address: sonia.j25@gmail.com

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ST. JOSEPH’S COLLEGE OF ENGINEERING

CHENNAI - 600119 TAMILNADU, INDIA

Email address: mahespal2002@gmail.com

