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GORENSTEIN FI-FLAT MODULES AND RELATIVE SINGULARITY
CATEGORIES

V. BIJU1 AND A. UMAMAHESWARAN

ABSTRACT. In this article we proved that the quotient triangulated category
is triangle-equivalent to the stable category of the Frobenius category of all
Gorenstein FI-flat and FI-cotorsion left R-modules. This result is a general-
ization of the result of Zhen Xing Di derived in [18] for Gorenstein flat modules.
Throughout this article unless otherwise specified, R is GFIF -closed ring.

1. INTRODUCTION

Triangle equivalences, the triangulated category and quotient triangulated
category are studied for Gorenstein flat modules by many authors in [2,4,7,11].
In this article we tried to connect them to Gorenstein FI-flat modules. Goren-
stein FI-Flat modules were introduced in [14] by Selvaraj et all and GFIF -
closed rings were developed in [13].

Beligiannis studied the quotient triangulated categoryDb(Rmod)/Kb(R−proj)
for an arbitrary ring R, where Db(Rmod) is the bounded derived category of
R-modules and Kb(R − proj) is the bounded homotopy category of projective
modules. Just as the singularity category, this category reflects the homological
singularity of the ring R, and it treats modules which are not necessarily finitely
generated. We call such a quotient triangulated category big singularity category
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of the ring R. Zhenxing Di et al in [19] extended a triangle equivalence estab-
lished by Beligiannis involving Gorenstein injective left R-modules from rings
with finite left Gorenstein global dimension to arbitrary rings. Also, in [20] ob-
tained the converse of Buchweitz’s triangle equivalence and a result of Beligian-
nis, and gave characterizations for Iwanaga–Gorenstein rings and Gorenstein
algebras.

2. FI -COTORSION DIMENSION OF COMPLEXES

Recall that a left R-module M is said to be Gorenstein FI-flat [13], if there
exists an exact sequence of FI-flat left R-modules,

· · · → F1 → F0 → F 0 → F 1 → · · ·

such that M ∼= Im(F0 → F 0) and such that B ⊗R − leaves the sequence ex-
act whenever B is a FI-injective right R-module. GFIF denotes class of all
Gorenstein FI-flat R-modules.

For unexplained notions and more deep understanding of the terms involed
in this article, we refer the readers to [3,5,6,8,9,12,14,15,17,18].

Definition 2.1. [16] Let R be a ring and let M be a left R-module. Then the FI-
flat dimension of M , denoted by FIf − dim(M), is defined as infn ≥ 0

: TorRn+1(N,M) = 0 for all FP -injective right R-modules N . If no such n exists,
set FIf − dim(M) =∞.

Definition 2.2. Let X be a complex and n an integer. The Gorenstein FI-flat
dimension GFIFdR(X) of X is defined as follows.

• GFIFdR(X) ≤ n if there is a quasi-isomorphism F −→ X with F FI-
flat such that sup F ≤ n and Cj(F ) is Gorenstein FI-flat for any integer
j ≤ n.
• If GFIFdR(X) ≤ n but GFIFdR(X) ≤ n − 1 does not hold, then
GFIFdR(X) = n.
• If GFIFdR(X) ≤ m for any integer m, then GFIFdR(X) = −∞.
• GFIFdR(X) ≤ m does not hold for any integer m, then GFIFdR(X) =∞.

Definition 2.3. Let X be a complex. A complete FI-flat resolution of X is a
diagram T

σ1→ F
σ2→ C

σ3← X of morphisms of complexes satisfying:

(1) F σ2→ C
σ3← X is a FI-flat-cotorsion resolution of X.
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(2) T is an exact complex with each entry in F ∩C and Zi(T ) ∈ GFIF for each
i ∈ Z.

(3) T σ1→ F is a morphism such that σ1 = idT

Definition 2.4. [1] A right R-module M is called an FI-cotorsion module if
Ext1(F,M) = 0 for any right FI-flat R-module F .

Definition 2.5. Let X be a complex. The FI-cotorsion dimension of X, denoted by
dgC−id(X), is defined as dgC−id(X) = infsupi|C − i = 0|X ≈ CwithC ∈ dgC.

If ddgC − id(X) ≤ n for all n ≤ Z, we write dgC − id(X) = −∞. If dgC −
id(X) ≤ n for no n ≤ Z, we write dgC−id(X) =∞. It is clear that dgC−id(X) =

−∞ if and only if X is an exact complex .

Lemma 2.1. Let 0 −→ X −→ X ′ −→ X ′′ −→ 0 be a short exact sequence
of complexes. If any two complexes of X, X ′ and X ′′ have finite FI-cotorsion
dimension, then so does the third .

3. TRIANGLE EQUIVALENCES

Lemma 3.1. The subcategory F ∩ C is an FI-injective cogenerator for GFIF .

The proof is straight away as we know that a Frobenius category has projec-
tives and injectives, and the projectives coincide with the injectives. Thus by
assuming B an additive full subcategory of an abelian category that is closed
under extensions I by class of all projective-injective objects of B we conclude
that B/I is a triangulated category

Proposition 3.1. The subcategory GFIF ∩ C forms a Frobenius category whose
projective-injective objects are precisely all modules in F ∩ C.

Proof. It has been proved in [13], that GFIF is closed under extensions. Hence
so is GFIF ∩ C. Then GFIF ∩ C becomes an exact category whose conflations
are just short exact sequences with all terms in GFIF ∩ C .First, We show that
modules in F ∩ C are projective and FI-injective in GFIF ∩ C. According to
Lemma 3.1, we see that (GFIF ∩C)⊥(F ∩C). This implies that modules in F ∩C
are FI-injective. On the other hand, it is trivial that (GFIF ∩C)⊥(F ∩C). Hence
modules in F ∩ C are projective.
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Let M be any module in GFIF ∩ C. By Lemma 3.1 again, there exists an
exact sequence 0 −→ M −→ K −→ M ′ in R − Mod with K ∈ F ∩ C and
M ′ ∈ GFIF ∩ C. This shows that the exact category GFIF ∩ C has enough FI-
injective objects. On the other hand, since M ∈ C, it follows that there exists
an exact sequence 0 −→ M ′′ −→ K ′ −→ M in R −Mod with K ′ ∈ F ∩ C and
M ′′ ∈ C. Note that M belongs to GFIF as well. We conclude that M ′′ is also
in GFIF because GFIF is closed under kernels of epimorphisms. Therefore,
M ′′ ∈ GFIF ∩ C . This implies that the exact category GFIF ∩ C has enough
projective objects. From the argument above, it is direct to conclude that in the
exact categoryGFIF ∩ C the class of projective objects coincides with the class
of FI-injective objects, and projective-FI-injective objects are just modules in
F ∩ C �

Lemma 3.2. Let M be a module in GFIF ∩ C.
(1) If F is a complex in Kb(F ∩ C) such that Fi = 0 for i ≤ 0, then

HomD(R−Mod)(M,F ) = 0 .
(2) If F is a complex in Kb(F ∩ C) such that Fi = 0 for i ≤ 0, then

HomD(R−Mod)(F,M) = 0 .

Proposition 3.2. All homology bounded complexes with both finite Gorenstein
FI-flat dimension and cotorsion dimension form a triangulated full subcategory of
Db(R−Mod) and is denoted by Db(R−Mod)

Proof. Let M and M ′ be two homology bounded complexes such that M ∼= M ′

in Db(R −Mod). Assume that M has both finite Gorenstein FI-flat dimension
and FI-cotorsion dimension. Then, we see that M ′ has the same properties
as M . This implies that Db(R −Mod) ̂GFIF ,C

is closed under isomorphisms in
Db(R − Mod). Moreover, it is clear that Db(R − Mod) ̂(GFIF ,C)

is closed un-
der shifts. Hence it remains to show that Db(R −Mod) ̂GFIF ,C

is closed under
cones. To this end, let X −→ Y −→ Z −→ X[1] be a distinguished triangle
in Db(R −Mod). We may assume that it is induced by a short exact sequence
0 −→ X −→ Y −→ Z −→ 0 in C(R − Mod). Now the assertion follows by
( [10] , Proposition 4) and Lemma 3.2. Let T be a triangulated category and K
a triangulated subcategory of T closed under summands, that is, a thick subcate-
gory. Then one can form the triangulated quotient T/K, It is also a triangulated
category. According to Proposition 3.2, we know that Db(R − Mod) ̂GFIF ,C is



GORENSTEIN FI-FLAT MODULES AND. . . 6985

a triangulated category. Moreover, it is clear that Kb(F ∩ C) is a triangulated
subcategory of Db(R −Mod) ̂(GFIF ,C)

, which is closed under direct summands.
Thus the triangulated quotient Db(R −Mod) ̂(GFIF ,C)

/Kb(F ∩ C) is also a trian-
gulated category. Notice that any module in GFIF ∩ C as a complex has both
finite Gorenstein FI-flat dimension and FI-cotorsion dimension, so there exists
an embedding:

GFIF ∩ C ↪→ Db(R−Mod) ̂GFIF ,C
.

Let F be the composition:

GFIF ∩ C ↪→ Db(R−Mod) ̂GFIF ,C
−→ Db(R−Mod) ̂GFIF ,C

/Kb(F ∩ C),

where the latter one is the natural quotient functor. It is clear that F sends
modules in F ∩ C to 0 in Db(R −Mod) ̂GFIF ,C

/Kb(F ∩ C), so it factors through
the stable category GFIF ∩ C, see Proposition 3.1.

Consequently, there exists a functor

F : GFIF ∩ C −→ Db(R−Mod) ̂GFIF ,C/K
b(F ∩ C) ,

such that F = Fπ, where π : GFIF ∩ C −→ GFIF ∩ C is the natural quotient
functor. �

Theorem 3.1. The functor F : GFIF ∩ C −→ Db(R−Mod) ̂(GFIF ,C)
/Kb(F ∩C) is

a triangle equivalence.

Proof. We show that F is a triangle functor, and it is essentially surjective (or
dense), full and faithful.

(1) F is a triangle functor.
Let A u→ B −→ C −→ T (A) be a distinguished triangle in GFIF ∩ C.

Then it comes from a commutative diagram

0 // A

��

// I(A) //

��

T (A) // 0

0 // B // C // T (A) // 0

in GFIF ∩ C with exact rows. This gives us a commutative diagram as
follows
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A

��

// I(A)

��

// T (A) // X[1]

��
B // C // T (A) // Y [1]

in Db(R − Mod) ̂(GFIF ,C)
. By sending this to a commutative diagram

Db(R−Mod) ̂(GFIF ,C)/K
b(F ∩ C), we get T (A) ∼= X[1]. Thus A u→ B −→

C −→ X[1] is a distinguished triangle in Db(R−Mod) ̂(GFIF ,C)
/Kb(F ∩C)

and it follows that F is a triangle functor.
(2) F is essentially surjective .

Let M be any complex in Db(R −Mod) ̂(GFIF ,C)
/Kb(F ∩ C) . Assume

that GFIFdR(M) = n and dgC − id(M) = t for some integers n and t.
Then, there exists a complex C ∈ dgC∩C(R−mod) satisfying C ∼= M in
Db(R−Mod) and C admits a complete flat resolution T u→ F −→ C

idC← C

such that Zi(T ) ∈ GFIF ∩ C for each i ∈ Z, ui = idFi for all i ≥ n and
F ∈ C◦(R−Mod). Note that F is of the form

· · · −→ Fn+1 −→ Fn −→ · · ·F−t+1 −→ F−t −→ 0 −→ · · · .
We have a distinguished triangle Fvn−1 −→ F −→ Fwn −→ Fvn−1[1]

in K(R − Mod). Send it now to a distinguished triangle in Db(R −
Mod) ̂(GFIF ,C)

/Kb(F ∩ C) .
Therefore, F ∼= Fwn in Db(R −Mod) ̂(GFIF ,C)

/Kb(F ∩ C). Moreover, it
is easy to see that Fwn ∼= Cn(F ) = Zn−1(T ) in Db(R−Mod). This implies
F ∼= Zn−1(T ) in Db(R − Mod) ̂(GFIF ,C)

/Kb(F ∩ C). Note that Zn−1(T )

belongs to GFIF ∩ C . It follows that F is essentially surjective.

(3) F is full.
Since we have F = Fπ, it suffices to show that F is full. Let

X
f← Z

g→ Y

be a morphism in Db(R−Mod) ̂(GFIF ,C)
/Kb(F ∩C) with X, Y ∈ GFIF ∩C

and f lies in the compatible saturated multiplicative system correspond-
ing to Kb(F ∩ C). Complete f to a distinguished triangle

X[−1] w→ Q −→ Z
f→ X
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with Q ∈ Kb(F ∩ C) . Consider the distinguished triangle

Qv−1 −→ Q −→ Qw0 −→ Qv−1[1] in Kb(F ∩ C) .

Consider now the following commutative of distinguished triangles

X[−1] // Qv−1

��

// Z ′

��

// X

X[−1] // Q // Z // X

where s, l, fare all in the compatible saturated multiplicative system
corresponding to Kb(F ∩ C). Since by Lemma 3.2, there exists some
k : X −→ Y such that gl = ks = kfl. So we have k = gf−1. Thus, F is
proved to be full.

(4) F is faithful.
Suppose that there exists a morphism f : X −→ Y in GFIF ∩ C such

that F (f) = 0. We want to show f = 0. To this end, complete f to a
distinguished triangle

X
f→ Y

g→ Z −→ X[1]

in GFIF ∩ C. Since F (f) = 0, F (g) is a section. According to (3), we
know that F is full. So there exists some morphism α : Z −→ Y such
that 1F (Y ) = F (αg). Let β = αg and complete β to a distinguished
triangle

Y
β→ Y −→ C(β) −→ Y [1]

in GFIF ∩ C. We have F (C(β)) ∈ Kb(F ∩ C). We know that any Goren-
stein FI-flat module with finite flat dimension is FI-flat. It follows that
C(β) ∈ F ∩ C . Hence β is an isomorphism in GFIF ∩ C. This implies
that g is a section, and hence f = 0. This completes the proof.

�

Lemma 3.3. Let R be a Gorenstein ring. Then we have Db(R −Mod)(GFIF∩C) =

Db(R−Mod).

Lemma 3.4. Let R be a GFIF -closed ring. Then there exists a triangle equivalence
GFIF ∩ C = Db(R−Mod)/Kb(F ∩ C).
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Let X be a subcategory of R-Mod. Then an exact complex of modules in
X is called totally X -acyclic if it is HomR(X ,−)-exact and HomR(−,X )-exact.
Denote by G(X ) the subcategory of R-Mod whose modules are of the form M ∼=
Z−1(X ) for some totally X -acyclic complex X .

Lemma 3.5. Let R be a Gorenstein ring. Then we have G(F ∩ C) = GFIF ∩ C.

Lemma 3.6. Let R be a FI-Gorenstein ring. Then there exists a triangle equiva-
lence G(F ∩ C) = Db(R−Mod)/Kb(F ∩ C).
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