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ON CERTAIN FRACTIONAL KINETIC EQUATIONS INVOLVING LAGUERRE
POLYNOMIALS

DEEPIKA JAIN AND ALOK BHARGAVA1

ABSTRACT. The purpose of the following paper is to calculate the solution of
the fractional kinetic equation pertaining to Laguerre Polynomials. We obtained
their solutions in expressions of the Mittag-Leffler function and interpreted their
pictorial representation to discuss the nature.

1. INTRODUCTION

In recent years, we have been used distinct patterns of fractional kinetic
equations in describing and solving essential questions of science. The time-
dependent quantity N(t) is an absolute response, then we can work out the rate
dN
dt

by the following expression

(1.1)
dN

dt
= −D + P,

where D denotes the destruction rate and P denotes the production rate of N .
Normally, D and P depend on N(t) themself: D = D(N) and P = P (N). But
this dependency is complex as the destruction or production at time t not only
depends on N(t) but also by the past research, i.e., N(ω), ω < t, of variable N .
This can be explained through the mathematical expression:

(1.2)
dN

dt
= −D(Nt) + P (Nt),
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where N(t) is defined by Nt(t
∗) = Nt(t− t∗), t∗ > 0.

Haubold and Mathai [3] further study of (1.2) and invented the following
equation

(1.3)
dNi

dt
= −ciNi(t)

wherein Ni = N0 is the initial condition and number density of species i at time
t = 0. Equation (1.3) is known as the standard kinetic equation where Constant
Ci > 0 and the solution of (1.3) is obtained as

(1.4) Ni(t) = N0e
−Cit.

Thereafter, Saxena and Kalla [8] invented the succeeding fractional kinetic equa-
tion:

(1.5) N(t)−N0f(t) = −cν0D−νt N(t), <(ν) > 0,

where N(t) represent the number density of species at the time t, N0 represent
the number of densities at the time t = 0, c is the constant, f(t) ∈ L(0,∞) and

0D
−ν
t is the Reimann-Liouville fractional operator [5], defined as

(1.6) 0D
−ν
t f(t) =

1

Γ(ν)

∫ t

0

(t− x)ν−1f(x)dx, <(ν) > 0.

Fractional Laguerre Polynomials.
Laguerre polynomials are the solution to the Laguerre differential equation.
These polynomials are used in some physical problems, such as the explanation
of the transversal profile of Laguerre-Gaussian laser beams [10]. Schrödinger’s
wave mechanics and Schrödinger wave equation for the hydrogen atom are the
applications of Laguerre polynomials [2]. Similarly the fractional form of La-
guerre polynomial, named as Fractional Laguerre polynomial [6] is also very
important and useful in the propagation of electromagnetic waves along trans-
mission lines [4].

Definition 1.1. For n ∈ N and (n − 1) < ν < n, 0 ≤ t < ∞ and a > −1, the
Fractional Laguerre Polynomials are specified by the following expression

(1.7) Lαn(t) =
n∑
k=0

(−1)kΓ(n+ α + 1)tk

Γ(k + α + 1)Γ(k + 1)Γ(n− k + 1)
; 0 ≤ t <∞.
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Remark: For α = 0 the Fractional Laguerre polynomial Lαn(t) reduces in simple
Laguerre polynomial Ln(t) as

(1.8) Ln(t) =
∞∑
k=0

(−1)kΓ(n+ 1)tk

[Γ(k + 1)]2Γ(n− k + 1)
, n ∈ N, 0 ≤ t <∞.

In the proposed work, we find the results in terms of Mittag-Leffler function [7]
defined as

(1.9) Eξ,η(x) =
∞∑
n=0

xn

Γ(nξ + η)
, <(ξ) > 0,<(η) > 0, ξ, η ∈ C.

Following is the well-known result from Miller and Ross [5]

(1.10) 0D
−λ
t tq =

Γ(q + 1)

Γ(q + λ+ 1)
tq+λ, <(q) > −1, 0 < <(λ) < 1, t > 0.

Laplace Transform [9] of a function is defined as

(1.11) L{f(t)} =

∫ ∞
0

e−ptf(t)dt = F (p).

Using the definition of Laplace transform, we can have following results easily

(1.12) L{Lαn(t)} =
n∑
k=0

(−1)kΓ(n+ α + 1)

Γ(k + α + 1)Γ(n− k + 1)pk+1

(1.13) L{Lαn(dµtµ)} =
n∑
k=0

(−1)k(1 + α)nΓ(n+ α + 1)Γ(kµ+ 1)dkµ

Γ(k + α + 1)Γ(k + 1)Γ(n− k + 1)pkµ+1

(1.14) L{0D
−λ
t Lαn(t)} =

n∑
k=0

(−1)k(1 + α)n
(α + 1)kΓ(n− k + 1)pk+α+1

,

where (.)r represents the Pochhamer symbol and defined as (a)n = Γ(a+n)
Γ(a)

. Fur-
ther,

(1.15) L{0D
−λ
t Lαn(dµtµ)} =

n∑
k=0

(−1)k(1 + α)nΓ(kµ+ 1)dkµ

(α + 1)kΓ(k + 1)Γ(n− k + 1)pkµ+λ+1
.

In the literature many workers has been contributed their work related to
Fractional differential equations and specially with fractional kinetic equations
using different functions. List of these works may include Saxena and Kalla
[8], Agarwal and Bhargava [1], etc. In this sequence, the goal of this work is
to discover the solution of Fractional kinetic equations pertaining to Laguerre
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polynomials. We found the result in expressions of Mittag-Leffler functions and
discuss the results with the pictorial presentations.

2. MAIN RESULTS

In this section we have taken new generalized forms of FKE by involving
Laguerre Polynomial and its fractional derivative and find their solution using
Laplace Transform technique. Further by the graphical presentation of the re-
sults for suitable parametric values, the results are interpreted.

Theorem 2.1. Let n ∈ N, (n − 1) < ν < n, 0 ≤ t < ∞ and α > −1, then the
solution of the FKE

(2.1) N(t)−N0L
α
n(t) = −cν 0D

−ν
t N(t)

is given by

(2.2) N(t) = N0

n∑
k=0

(−1)kΓ(n+ α + 1)tk

Γ(k + α + 1)Γ (n− k + 1)
Eν,k+1(−cνtν),

where Eν,k+1(.) is the generalized Mittag-Leffler function.

Proof. Taking the Laplace transform of equation (2.1), we have

N(p) = N0

n∑
k=0

(−1)kΓ(n+ α + 1)

Γ(k + α + 1)Γ (n− k + 1) (1 + cνp−ν)pk+1

= N0

n∑
k=0

(−1)kΓ(n+ α + 1)

Γ(k + α + 1)Γ (n− k + 1) (1 + cνp−ν)pk+1

∞∑
s=0

(−1)scsνp−(sν+k+1).

Taking inverse Laplace Transform we have

N(t) = N0

n∑
k=0

(−1)kΓ(n+ α + 1)tk

Γ(k + α + 1)Γ (n− k + 1)

∞∑
s=0

(−cνtν)s

Γ(sν + k + 1)

Now, using the definition of Mittag-Leffler function from (1.9), we obtain the
desired result. �

Corollary 2.1. By putting α = 0 in Theorem 2.1, we get the following FKE in terms
of Laguerre Polynomial

(2.3) N(t)−N0Ln(t) = −cν 0D
−ν
t N(t)
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with the solution

(2.4) N(t) = N0

n∑
k=0

(−1)kΓ(n+ 1)tk

Γ(k + 1)Γ (n− k + 1)
Eν,k+1(−cνtν).

Theorem 2.2. Let n ∈ N, (n − 1) < ν < n, 0 ≤ t < ∞, d 6= c, µ > 0 and α > −1,
then the solution of the FKE

(2.5) N(t)−N0L
α
n(dµtµ) = −cν 0D

−ν
t N(t)

is given by

(2.6) N(t) = N0L
α
n(dµtµ)Γ(kµ+ 1)Eν,kµ+1(−cνtν).

Proof. Taking the Laplace transform of equation (2.5), we have

N(p) = N0

n∑
k=0

(−1)kΓ(n+ α + 1)Γ(kµ+ 1)dkµ

Γ(k + α + 1)Γ (n− k + 1) Γ(k + 1)(1 + cνp−ν)pkµ+1

= N0

n∑
k=0

(−1)kΓ(n+ α + 1)Γ(kµ+ 1)dkµ

Γ(k + α + 1)Γ (n− k + 1) Γ(k + 1)

∞∑
s=0

(−1)scsνp−(sν+kµ+1).

Taking inverse Laplace Transform we have

N(t) = N0

n∑
k=0

(−1)kΓ(n+ α + 1)Γ(kµ+ 1)dkµtkµ

Γ(k + α + 1)Γ (n− k + 1) Γ(k + 1)

∞∑
s=0

(−csνtsν)s

Γ(sν + kµ+ 1)
.

Now, using the definition of Mittag-Leffler function from (1.9) and Fractional
Laguerre Polynomial from (1.7), we obtain the desired result. �

Theorem 2.3. Let n ∈ N, (n− 1) < ν < n, 0 ≤ t <∞, λ > 0, λ 6= ν and α > −1,
then the solution of the FKE

(2.7) N(t)−N0[0D
−λ
t (Lαn(t))] = −cν 0D

−ν
t N(t)

is given by

(2.8) N(t) = N0

n∑
k=0

(−1)k(1 + α)nt
k−λ

(1 + α)kΓ (n− k + 1)
Eν,k+λ+1(−cνtν).

Proof. Taking the Laplace transform of equation (2.7), we have

N(p) = N0

n∑
k=0

(−1)k(1 + α)n
(1 + α)kΓ (n− k + 1) (1 + cνp−ν)pk+λ+1

= N0

n∑
k=0

(−1)k(1 + α)n
(1 + α)kΓ (n− k + 1)

∞∑
s=0

(−1)scsνp−(sν+k+λ+1).
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Now, taking inverse Laplace Transform and using the definition of Mittag-
Leffler function from (1.9), we achieve the required result. �

Theorem 2.4. Let n ∈ N, (n− 1) < ν < n, 0 ≤ t < ∞, d 6= c, µ > 0, λ > 0, λ 6= ν

and α > −1, then the solution of the FKE

(2.9) N(t)−N0[0D
−λ
t (Lαn(dµtµ))] = −cν 0D

−ν
t N(t)

is given by

(2.10) N(t) = N0

n∑
k=0

(−1)k(1 + α)nΓ(kµ+ 1)dkµtkµ+λ

(1 + α)kΓ(k + 1)Γ (n− k + 1)
Eν,kµ+λ+1(−cνtν).

Proof. Proceeding on the similar lines of Theorem 2.1, Theorem 2.2 and Theo-
rem 2.3 we can easily prove the result (2.10). �

3. SPECIAL CASES

(i) If we take d = c in Theorem 2.2, then the equation (2.3) reduces in

(3.1) N(t)−N0L
α
n(cµtµ) = −cν 0D

−ν
t N(t)

with the solution

(3.2) N(t) = N0L
α
n(cµtµ)Γ(kµ+ 1)Eν,kµ+1(−cνtν).

Other conditions are same as with (2.2).

(ii) If we put λ = ν in Theorem 2.3, then the equation (2.7) reduces in

(3.3) N(t)−N0[0D
−ν
t (Lαn(t))] = −cν 0D

−ν
t N(t)

with the solution

(3.4) N(t) = N0t
νLαn(t)Γ(k + 1)Eν,k+ν+1(−cνtν).

Other conditions are same as with (2.3).

(iii) If we put d = c and λ = ν in Theorem 2.4, then the equation (2.9) reduces
in

(3.5) N(t)−N0[0D
−nu
t (Lαn(cµtµ))] = −cν 0D

−ν
t N(t)

with the solution

(3.6) N(t) = N0t
νLαn(cµtµ)Γ(kµ+ 1)Eν,kµ+ν+1(−cνtν).
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4. CONCLUSION

Here, we propose the solution of generalized fractional kinetic equations in-
volving Laguerre Polynomial in the form of four theorems by using the approach
of Laplace transform. The results obtained here are believed to be new and have
wide applications in science and technology. Further, the behaviour of these re-
sults are interpreted by graphs, taking distinct values of the parameters.

Graphical Interpretation of Results.

We draw the graphs of the solutions of FKE mentioned in Theorem 2.1 and
corollary 2.1. Also, the graphs for the solutions of FKE mentioned in Theorem
2.2, 2.3 and Theorem 2.4 are there. For specific parametric values, we can
observe that N(t) > 0 for t > 0.

FIGURE 1. for k = 1,
s = 1 and ν =

0.5(0.5)1.5

FIGURE 2. for k = 2,
s = 2 and ν =

0.5(0.5)1.5
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FIGURE 3. for k = 1,
s = 1, a = 1/2 and d = 2

FIGURE 4. for k = 1,
s = 1, a = 1/2 and d =

−2

FIGURE 5. for k = 1,
s = 1, a = 1/2 and α = 2

FIGURE 6. for k = 2,
s = 2, a = 1/2 and α =

−2
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FIGURE 7. for k = 1,
s = 1, a = 1/2 and α = 2

FIGURE 8. for k = 2,
s = 2, a = 1/2 and α =

−2
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