

Advances in Mathematics: Scientific Journal **9** (2020), no.9, 7093–7099 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.59

CHARACTERIZATION OF GENERALIZED COMPLEMENTS OF A GRAPH

SHANKAR N. UPADHYAY, SABITHA D'SOUZA¹, SWATI NAYAK, PRADEEP G. BHAT, AND P. SHANKARAN

ABSTRACT. For a graph G(V, E), let $P = \{V_1, V_2, V_3, \ldots, V_k\}$ be a partition of vertex set V(G) of order $k \ge 2$. For all V_i and V_j in P, $i \ne j$, remove the edges between V_i and V_j in graph G and add the edges between V_i and V_j which are not in G. The graph G_k^P thus obtained is called the k-complement of graph G with respect to the partition P. For each set V_r in P, remove the edges of graph G inside V_r and add the edges of \overline{G} (the complement of G) joining the vertices of V_r . The graph $G_{k(i)}^P$ thus obtained is called the k(i)-complement of graph G with respect to the partition P. In this paper, we characterize few properties of generalized complements of a graph.

1. INTRODUCTION

Let G be a graph on n vertices and m edges. The complement of a graph G, denoted as \overline{G} has the same vertex set as that of G, but two vertices are adjacent in \overline{G} if and only if they are not adjacent in G. If G is isomorphic to \overline{G} then G is said to be self-complementary graph. A graph G is r regular if $\delta(G) = \Delta(G) = r$. If G is any r-regular graph then \overline{G} is also (n - r - 1) regular. For all notations and terminologies we refer [1]. E. Sampathkumar et al. in [2, 3] introduced two types of generalized complements of a graph. For completeness we produce these here.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C30, 05C40.

Key words and phrases. generalized complements, regular graphs, line graphs, Euler graphs.

Let $P = \{V_1, V_2, V_3, \dots, V_k\}$ be the partition of vertex set V(G) of order $k \ge 2$. For all V_i and V_j in P, $i \neq j$, remove the edges between V_i and V_j in graph Gand add the edges between V_i and V_j which are not in G. The graph G_k^P thus obtained is called the k-complement of graph G with respect to the partition P. For each set V_r in P, remove the edges of graph G inside V_r and add the edges of \overline{G} (the complement of G) joining the vertices of V_r . The graph $G_{k(i)}^P$ thus obtained is called the k(i)-complement of graph G with respect to partition P. For more on complements of graphs we refer [5–7].

In this paper, conditions for regularity of generalized complements of a regular graph are found. The generalized complements of a graph isomorphic to its line graph are studied.

Lemma 1.1. Let $P = \{V_1, V_2, \dots, V_k\}$ be a partition of order $k \ge 2$ of a connected graph G on n vertices. If d is degree of a vertex v in G and d_i is degree if v in $\langle V_i \rangle$, then degree of v in G_k^P is $n - d + 2d_i - n_i$ where $n_i = |V_i|$.

Proof. Lemma follows by definition of G_k^P .

Proposition 1.1. For any r-regular graph G(V, E) on n vertices with partition $P = \{V_1, V_2, \dots, V_k\}$ of V of order $k \ge 2$, G_k^p is regular if (i) and either (ii) or (iii) of the following conditions hold:

- (i) k divides n and cardinality of V_i is exactly $\frac{n}{k}$ for every i = 1, 2, 3, ..., k.
- (ii) Vertices in each partite are independent.
- (iii) Each vertex v in $\langle V_i \rangle$ has equal degree.

Proof. Let G(V, E) be any r-regular graph on n vertices. Let $P = \{V_1, V_2, \ldots, V_k\}$ be partition of V of order $k \ge 2$. Suppose degree of a vertex v in $\langle V_i \rangle$ is d_i for $i = 1, 2, 3, \dots, k$ then if conditions (i) and (ii) hold, the vertex v will be adjacent to exactly $n - d - (\frac{n}{k})$ vertices in G_k^p . Thus G_k^p is $n - d - (\frac{n}{k})$ regular. On the other hand, if conditions (i) and (ii) hold then the vertex v will be adjacent to exactly $n-d+d_i-\left(\frac{n}{k}\right)$ vertices in G_k^p . Hence the proof.

Corollary 1.1. For any r-regular graph G(V, E) on n vertices with partition P = $\{V_1, V_2, ..., V_k\}$ of *V* of order $k \ge 2$,

- (1) If G_k^p is $n d (\frac{n}{k})$ regular then $G_{k(i)}^p$ is $d + (\frac{n}{k}) 1$ regular. (2) If G_k^p is $n d + 2d_i (\frac{n}{k})$ regular then $G_{k(i)}^p$ is $d 2d_i + (\frac{n}{k}) 1$ regular.

Proof. Follows from noting that G_k^p and $G_{k(i)}^p$ are complements of each other. \Box

Here $n = 4, d = 2, d_i = 0, \frac{n}{k} = 2, k = 2$

1.1. k(i) – Complement of a graph isomorphic to its line graph.

In this section the k(i)-complement of a graph G isomorphic to its line graph are studied. Here for any graph G, L(G) denotes line graph, $G_{k(i)}^p$ denotes k(i)- complement of G, |V(G)| = n the number of vertices in G and |E(G)| = enumber of edges in G. C_n the cycle of length n, $K_{1,n}$ the star graph and P_n path of length n - 1.

Theorem 1.1. [1] A connected graph G is isomorphic to its line graph L(G), if and only if G is a cycle.

Martin Aigner [4] showed that there are only two graphs namely C_5 and C_3 with one pendant edge emanating at each of its vertices have the property that their complement is isomorphic to line graph

Observation.

- (1) Let G be any graph, for an automorphism between V(G) and $V(G_{k(i)}^p)$ one must have $|E(G)| = |V(G)| = |V(G_{k(i)}^p)|$. This implies that G is connected unicyclic graph or G consists of c components each of which are unicyclic.
- (2) Let P = {V₁, V₂,..., V_k}, k ≥ 2, be a partition of V. Then none of < Vi > i = 1, 2, ..., k must be complement of any of nine forbidden graphs [1] for line graphs.

Theorem 1.2. For any graph G of order n and size q, $G_{k(i)}^p$ is isomorphic to L(G) if any one of the following conditions hold.

S. N. UPADHYAY, S. D'SOUZA, S. NAYAK, P. G. BHAT, AND P. SHANKARAN

- (1) G is any cycle C_n , and $P = \{V_1, V_2, \dots, V_n\}$ partition of V(G), with $V_i = 1$ for all *i*.
- (2) *G* is unicyclic with at least one pendant edge attached to a cycle C_n and $P = \{V_1, V_2, \ldots, V_n\}$ partition of *V* such that each V_i for $i = 1, 2, \ldots, n$, has exactly one vertex v_i of C_n and all the pendant vertices at v_{i+1} , all the pendant vertices at v_q are in the partite that contains v_1 .
- (3) *G* is unicyclic with at least one path attached to a cycle C_n and $P = \{V_1, V_2, \ldots, V_{n-x}\}$ partition of *V* where *x* is number of vertices of the path at distance one from vertices of C_n such that each V_i for $i = 1, 2, \ldots, n$, has exactly one vertex v_i of C_n and all the vertices at distance one from v_{i+1} of C_n , all the vertices at distance one from v_q belong to the partite that contains v_1 .

Proof. Let G be any graph satisfying condition 1, then by definition of $G_{k(i)}^p$ is C_n . Thus in this case $G_{k(i)}^p$ isomorphic to L(G).

Let G be any graph satisfying condition 2. Let e_1, e_2, \ldots, e_j , be the pendant edges at a vertex v_j of C_n . Then these edges form a complete subgraph in L(G). This is true at every vertex of C_n . Thus L(G) is C_n with complete subgraphs attached at the vertices of C_n for the partition $P = \{V_1, V_2, \ldots, V_n\}$ of V such that each V_i for $i = 1, 2, \ldots, n$ has exactly one vertex v_i of C_n and all the pendant vertices at v_{i+1} , all the pendant vertices at v_q are in the partite that contains v_1 . Then $G_{k(i)}^P$ is C_n with complete subgraphs attached at the vertices of C_n and isomorphic to L(G).

If G is any graph satisfying condition 3 the result follows similar way.

Example 2. Condition 1.

FIGURE 2

Condition 2.

7096

FIGURE 3

2. CHARECTERIZATION OF GENERALIZED COMPLEMENTS OF EULER GRAPHS

Definition 2.1. A connected graph G is called Eulerian graph if it contains a closed trail containing all the edges of G.

Theorem 2.1. If G(V, E) is Eulerian and $P = \{V_1, V_2, \ldots, V_k\}$ partition for V of order $k \ge 2$, such that for at least one $i, i = 1, 2, \ldots, k, |V_i| = 2$ then $G_{k(i)}^p$ is non Eulerian.

Proof. Let G(V, E) be any Eulerian graph. Then every vertex of G is of even degree. Suppose $P = \{V_1, V_2, \ldots, V_k\}$ partition for V of order $k \ge 2$. Let V_i be a partition having only two vertices say u and v. Then in $G_{k(i)}^p$, degree of u and v will be increased by 1 if u and v are not adjacent in $\langle V_i \rangle$ and degree of u and v will be decreased by 1 if u and v are adjacent in $\langle V_i \rangle$. Thus in either of the cases $G_{k(i)}^p$ has a vertex of odd degree. Hence $G_{k(i)}^p$ is not Eulerian.

Theorem 2.2. If G is any Eulerian graph and $P = \{V_1, V_2, \ldots, V_k\}$ partition for V of order $k \ge 2$, then $G_{k(i)}^p$ is Eulerian if all the following conditions hold good.

- (1) $|V_i|$ is odd for each i = 1, 2, ..., k.
- (2) For every vertex v of odd degree in $\langle V_i \rangle$ there must be odd number of vertices in V_i not adjacent to v for i = 1, 2, ..., k.

S. N. UPADHYAY, S. D'SOUZA, S. NAYAK, P. G. BHAT, AND P. SHANKARAN

7098

(3) For every vertex v of even degree in $\langle V_i \rangle$ there must be even number of vertices in V_i not adjacent to v for i = 1, 2, ..., k.

Proof. Let *G* be any Eulerian graph. Then degree of every vertex of *G* is even. Let $P = \{V_1, V_2, \ldots, V_k\}$ be a partition for *V* of order $k \ge 2$ for which above three conditions hold. Let vertex $v \in V_i$ for some $i = 1, 2, \ldots, k$. Suppose degree of *v* in *G* is *d* and degree of *v* in $< V_i >$ is d_i . If d_i is odd then there are odd number of vertices say n_i in $< V_i >$ which are not adjacent to *v*. Then degree of *v* in G_k^p is $d - d_i + n_i$ which is even. On the other hand, if d_i is even then there are even number of vertices say l_i in $< V_i >$ which are not adjacent to *v*. Then degree of *v* in $G_{k(i)}^p$ is $d - d_i + l_i$ which is even. This is true for every *v* and each $i = 1, 2, \ldots, k$. Thus every vertex of $G_{k(i)}^p$ is of even degree. Hence $G_{k(i)}^p$ is Eulerian.

REFERENCES

- [1] F. HARARY: Graph theory, Narosa Publishing House, New Delhi, 1989.
- [2] E. SAMPATHKUMAR, L. PUSHPA LATHA : Complement of a graph: A generalization, Graphs and Combinatorics, **14** (1998), 377–392.
- [3] E. SAMPATHKUMAR, L. PUSHPA LATHA, C. V. VENKATACHALAM, P. BHAT: Genearalized complements of a graph, Indian J. pure appl. Math., **29**(6) (1998), 625–639.
- [4] M. AIGNAR: Graphs Whose Complement and Line Graph are Isomorphic, Journal of Combinatorial Theory, 7 (1969), 273–275.
- [5] B. CHALUVARAJU, C. NANDEESHUKUMAR, V. CHATRA: Special kinds of colorable complements in Graphs, International J. Math. Combin., 3 (2013), 35–43.
- [6] T. GANGOPADHYAY, HEBBARE, S. P. RAO: *r*-partite self-complementary graphs-diameters, Discrete Math., 32 (1980), 245–255.
- [7] H. J. GOWTHAM, S. D'SOUZA, P. G. BHAT: Laplacian energy of generalized complements, Kragujevac J. Math. 42(2) (2018), 299–315.

CHARACTERIZATION OF GENERALIZED COMPLEMENTS OF A GRAPH

7099

DEPARTMENT OF MATHEMATICS MAHARAJA INSTITUTE OF TECHNOLOGY THANDAVAPURA-571302, INDIA *Email address*: shankar.upadhyay8@gmail.com

DEPARTMENT OF MATHEMATICS MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL ACADEMY OF HIGHER EDUCATION MANIPAL-576104, INDIA Email address: sabitha.dsouza@manipal.edu

DEPARTMENT OF MATHEMATICS MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL ACADEMY OF HIGHER EDUCATION MANIPAL-576104, INDIA Email address: swati.nayak@manipal.edu

DEPARTMENT OF MATHEMATICS MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL ACADEMY OF HIGHER EDUCATION MANIPAL-576104, INDIA *Email address*: pg.bhat@manipal.edu

DEPARTMENT OF MATHEMATICS NMAM INSTITUTE OF TECHNOLOGY NITTE-574110, INDIA Email address: shankarpbharath@yahoo.co.in