ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.9, 6491–6497 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.6

SUBTRACTIVE PARTIAL Γ -SUBSEMIMODULES OF PARTIAL Γ -SEMIMODULES

P. V. SRINIVASA RAO¹, M. SIVA MALA, AND K. KIRAN KUMAR

ABSTRACT. In this paper, we study the concepts of subtractive partial Γ -subsemimodules of partial Γ -semimodules. Also, we introduce the notion of left austere partial Γ -semimodule and study its characterization.

1. INTRODUCTIOIN

In 1995, M Murali Krishna Rao [3] developed the thory of Γ -semirings and showed that this class is the common extension of semirings and Γ -rings. In 2014, M. Siva Mala [4] defined the concept of partial Γ -semiring by replacing the binary addition in Γ -semirings to infinitary partial addition and showed that this class is a common extension of partial semirings introduced by Arbib, manes [1] and Benson [2] and M. Murali Krishna Rao [3] Γ -semirings. Also M. Siva Mala [5], [6] and [7] studied theory of ideals for the Γ -so-rings. In [8], we introduced the concepts of left (right) partial Γ -semimodules over partial Γ -semirings.

In this paper, we study the concepts of subtractive partial Γ -subsemimodules of partial Γ -semimodules. Also, we introduce the notion of left austere partial Γ -semimodule and study its characterization.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 16Y60.

Key words and phrases. Left partial Γ -semimodule, subtractive partial Γ -subsemimodule and left austere partial Γ -semimodule.

P. V. SRINIVASA RAO, M. SIVA MALA, AND K. KIRAN KUMAR

2. Preliminaries

In the preliminaries, we recollect the necessary concepts from the literature. Throughout this paper, we use the following notations.

- (1) **PM** stands for partial monoid.
- (2) **P** Γ **SR** stands for partial Γ -semiring.
- (3) $L(R)P\Gamma I$ stands for left (right) partial Γ -ideal.
- (4) **SL(R)P** Γ **I** stands for subtractive left (right) partial Γ -ideal.
- (5) $L(R)P\Gamma SM$ stands for left (right) partial Γ -semimodule.
- (6) **P** Γ **SSM** stands for partial Γ -subsemimodule.
- (7) **SP** Γ **SSM** stands for subtractive partial Γ -subsemimodule.
- (8) LA stands for left austere.

A mapping $a : \Delta \to G$ from a set Δ to a nonempty set G is called a Δ -family in G. It is denoted by $(a_l : l \in \Delta)$, where $a_l = la, \forall l \in \Delta$. A sub family of $(a_l : l \in \Delta)$ is a family $(a_k : k \in K)$ where $K \subseteq \Delta$. The family $(a_l : l \in \emptyset)$ is called an *empty family*. Since $\Sigma(a_l : l \in \Delta) \notin G$ for all $(a_l : l \in \Delta)$ in G, Σ is called an *infinitary partial addition*. If $\Sigma_{l \in \Delta} a_l \in G$ then $(a_l : l \in \Delta)$ is called a *summable* family.

Definition 2.1. [2] Let G be a nonempty set and Σ be an infinitary partial addition on G. Then the structure (G, Σ) is called a **PM** if it satisfies the following conditions:

(M1) If $(g_l : l \in \Delta)$ is in G and $\Delta = \{k\}$, then $\Sigma_{l \in \Delta} g_l = g_k \in G$. (M2) If $(g_l : l \in \Delta)$ is in G and $(\Delta_k : k \in K)$ is a partition of Δ , then $\Sigma_{l \in \Delta} g_l \in G \iff \Sigma_{l \in \Delta_k} g_l \in G \forall k \in K$ and $\Sigma_{k \in K} (\Sigma_{l \in \Delta_k} g_l) \in G$, and $\Sigma_{l \in \Delta} g_l = \Sigma_{k \in K} (\Sigma_{l \in \Delta_k} g_l)$.

Example 1. [2] Let Pfn(A, B) be the set of all partial functions from a set A to a set B. Define Σ on Pfn(A, B) as follows: Let $(f_l : l \in \Delta)$ be a family in Pfn(A, B). Then $\Sigma_{l\in\Delta}f_l \in Pfn(A, B) \iff$ for l, k in Δ such that $l \neq k$, $dom(f_l) \bigcap dom(f_k) = \emptyset$ and for any $a \in A$,

$$a(\Sigma_l f_l) = \begin{cases} af_l, \text{ if } a \in dom(f_l) \text{ for some } l \in \Delta;\\ undefined, \text{ otherwise.} \end{cases}$$

Then $(Pfn(A, B), \Sigma)$ is a **PM**.

6492

Definition 2.2. [4] Let (S, Σ) and (Γ, Σ^*) be two **PMs**. Then S is called a **P** Γ **SR** if there is an operation $S \times \Gamma \times S \longrightarrow S : (a, \mu, b) \mapsto a\mu b \forall a, b \in S$ and $\mu \in \Gamma$ subject to the following conditions $\forall a, b, c, (a_l : l \in \Delta) \in S$ and $\mu, \gamma, (\mu_l : l \in \Delta) \in \Gamma$

- (S1) $a\mu(b\gamma c) = (a\mu b)\gamma c$,
- (S2) $\Sigma_{l\in\Delta}a_l \in S$ implies that $\Sigma_{l\in\Delta}(a\mu a_l) \in S$ and $a\mu[\Sigma_{l\in\Delta}a_l] = \Sigma_{l\in\Delta}(a\mu a_l)$, $[\Sigma_{l\in\Delta}a_l]\mu a = \Sigma_{l\in\Delta}(a_l\mu a)$,
- (S3) $\Sigma_{l\in\Delta}^*\mu_l\in\Gamma$ implies that $\Sigma_{l\in\Delta}(a\mu_l b)\in S$ and $a(\Sigma_{l\in\Delta}^*\mu_l)b=\Sigma_{l\in\Delta}(a\mu_l b)$.

Example 2. [4] Consider the PMs $(Pfn(A, B), \Sigma)$ and $(Pfn(B, A), \Sigma^*)$ as defined in the Example 1. Now define an operation $Pfn(A, B) \times Pfn(B, A) \times Pfn(A, B) \longrightarrow Pfn(A, B) : (g, \mu, h) \mapsto g\mu h$ where $a(g\mu h) = (((ag)\mu)h)$, for any $a \in A$. Then Pfn(A, B) is a **P**Г**SR** where $\Gamma = Pfn(B, A)$.

In general Pfn(A, B) need not be a Γ -semiring, because an arbitrary family in the **P** Γ **SR** Pfn(A, B) need not be summable. Here $\Gamma = Pfn(B, A)$.

Definition 2.3. [5] Let S be a **P** Γ **SR**, $K \subseteq S$ ($K \neq \emptyset$) and $\Omega \subseteq \Gamma$ ($\Omega \neq \emptyset$). Then (K, Ω) of (S, Γ) is called a **L**(**R**)**P** Γ **I** of S if the following conditions hold in K:

- (I1) $\Sigma_l a_l \in S$ and $a_l \in K \ \forall l \in \Delta$ implies $\Sigma_l a_l \in K$,
- (I2) $\Sigma_l^* \mu_l \in \Gamma$ and $\mu_l \in \Omega \ \forall l \in \Delta$ implies $\Sigma_l^* \mu_i \in \Omega$, and
- (I3) $s\mu a \in K$ ($a\mu s \in K$) $\forall s \in S, a \in K$ and $\mu \in \Omega$.

Definition 2.4. [8] Let S be a P Γ SR and (N, Σ') be a PM. Then N is called a L(R)P Γ SM over S if \exists an operation $S \times \Gamma \times N \rightarrow N : (s, \mu, n) \mapsto s\mu n (N \times \Gamma \times S \rightarrow N : (n, \mu, s) \mapsto n\mu s)$ which satisfies the following axioms:

- (SM1) if $\Sigma'_l n_l \in N$ then $\Sigma'_l (s\mu n_l) \in N$ and $s\mu(\Sigma'_l n_l) = \Sigma'_l (s\mu n_l), b$
- (SM2) if $\Sigma_l^* \mu_l \in \Gamma$ then $\Sigma_l'(s\mu_l n) \in N$ and $s(\Sigma_l^* \mu_l) n = \Sigma_l'(s\mu_l n)$ (where Σ^* is the partial addition in Γ),b
- (SM3) if $\Sigma_l s_l \in S$ then $\Sigma'_l(s_l \mu n) \in N$ and $(\Sigma_l s_l) \mu n = \Sigma'_l(s_l \mu n)$ (where Σ is the partial addition in S),b
- (SM4) $(s\mu t)\alpha n = s\mu(t\alpha n)$,

(SM5)
$$0_S \mu n = s 0_{\Gamma} n = s \mu 0_N = 0_N$$
 for every $n, n_i \in N, \mu, \mu_i, \alpha \in \Gamma, s, s_i, t \in S$.

For the convenience of study the symbol Σ is used hereafter instead of the partial additions Σ in S, Σ^* in Γ and Σ' in N irrespective of the context.

Definition 2.5. [8] Let S be a P Γ SR, N be a L(R)P Γ SM over S and $K \subseteq N$ ($K \neq \emptyset$). Then K is called a P Γ SSM of N if the following holds in K: (SSM1) if $\Sigma_l a_l \in N$ and $a_l \in K \forall l \in \Delta$ then $\Sigma_l a_l \in K$, and (SSM2) if $s \in S$, $\mu \in \Gamma$, $a \in K$ then $s\mu a \in K$ ($a\mu s \in K$).

6494

Definition 2.6. [8] Let N be a LP Γ SM over a P Γ SR S, K be a P Γ SSM of N and $n^* \in N$. Then $(K : n^*) = \{a \in S \mid a\mu n^* \in K \forall \mu \in \Gamma\}.$

Theorem 2.1. [8] Let N be a LP Γ SM over a P Γ SR S, K be a P Γ SSM of N and $n^* \in N$. Then $(K : n^*)$ is a LP Γ I of S.

Definition 2.7. [8] If K is a $\mathbf{P}\Gamma\mathbf{SSM}$ of N and $C \subseteq K$ ($C \neq \emptyset$) then (K : C) = $\bigcap \{(K : c) \mid c \in C\}.$

3. Subtractive Partial Γ -Subsemimodules

In this section we define $SP\Gamma SSM$ and $LAP\Gamma SM$.

Definition 3.1. Let N be a LP Γ SM over a $P\Gamma$ SR S and $C \subseteq N$ ($C \neq \emptyset$). Then C is called subtractive subset of N if for any $p, q \in N, p \in C$ and $p + q \in C$ implies $q \in C$.

Example 3. Let $S = \{0, c_1, c_2, c_3, c_4, c_5\}$. Define Σ on S as

$$\Sigma_{l}x_{l} = \begin{cases} x_{k}, \text{ if } x_{l} = 0 \ \forall l \neq k, \text{ for some } k, \\ c_{4}, \text{ if } (x_{j} = c_{1}, x_{k} = c_{2} \text{ or } x_{j} = c_{2}, x_{k} = c_{3} \text{ for some } j, k \text{) and } x_{l} = 0 \ \forall l \neq j, k, \\ undefined, \text{ otherwise.} \end{cases}$$

Then S is a **PM**. Let $\Gamma = \{0^*, 1^*\}$. Define Σ^* on Γ as

$$\Sigma_l^* \mu_l = \begin{cases} 0^*, \ if \ \mu_l = 0^* \ \forall l \in \Delta \\ 1^*, \ if \ \mu_l = 0^* \ \forall l \neq k \ for \ some \ k \\ undefined, \ otherwise. \end{cases}$$

Then Γ is a **PM**. Define an operation $S \times \Gamma \times S \to S$ as: $x0^*y = 0 \forall x, y \in S$, $x1^*y = 0 \forall x, y \in S \setminus \{c_5\}$ and $c_51^*y = y1^*c_5 = y \forall y \in S$. Then S is a **P** Γ **SR**. Take N := S. Then N is a **LP** Γ **SM** over S. Now $C = \{0, c_1, c_2\}$ is a subtractive subset of N whereas $D = \{0, c_1, c_2, c_4\}$ is not a subtractive subset of N (since $c_2 \in D$ and $c_2 + c_3 = c_4 \in D$ but $c_3 \notin D$. **Theorem 3.1.** Let N be a LP Γ SM over a P Γ SR S, K be a SP Γ SSM of N and $C \subseteq N$ ($C \neq \emptyset$). Then (K : C) is a SLP Γ I of S.

Proof. Note that $(K:C) = \bigcap_{c \in C} (K:C) = \bigcap_{c \in C} \{s \in S \mid s\mu c \in K \forall \mu \in \Gamma\}$. By the Theorem 2.1, (K:C) is a LPTI of S. So it is enough to prove that (K:C) is subtractive. Let $p, q \in N \ni p \in (K:C)$ and $p + q \in (K:C)$. Then $p \in (K:c)$ and $p + q \in (K:c) \forall c \in C$. $\Rightarrow p\mu c \in K$ and $(p + q)\mu c \in K \forall \mu \in \Gamma, c \in C$. $\Rightarrow p\mu c \in K$ and $p\mu c + q\mu c \in K \forall \mu \in \Gamma, c \in C$. Since K is a SPTSSM of N, $q\mu c \in K \forall \mu \in \Gamma, c \in C$. $\Rightarrow q \in (K:c) \forall c \in C$. $\Rightarrow q \in (K:C)$. Hence (K:C) is a SLPTI of S.

Theorem 3.2. Let N be a LP Γ SM over a P Γ SR S. If L, L*, L** are P Γ SSMs of N \ni L is subtractive and $L^* \subseteq L$. Then $L \cap (L^* + L^{**}) = L^* + (L \cap L^{**})$.

Proof. Since $L^* \subseteq L$, it is trivial to prove that $L \cap (L^* + L^{**}) \supseteq L^* + (L \cap L^{**})$. Now take $p \in L \cap (L^* + L^{**})$. Then $p \in L$ and $p \in (L^* + L^{**})$. $\Rightarrow p \in L$ and p = q + r where $q \in L^*$, $r \in L^{**}$. $\Rightarrow p = q + r \in L$ where $q \in L^*$, $r \in L^{**}$. Since $L^* \subseteq L$, $q \in L$ and $q + r \in L$. Since L is a **SP** Γ **SSM** of N, $r \in L$. $\Rightarrow p = q + r$ where $q \in L^*$ and $r \in L \cap L^{**}$. $\Rightarrow p \in L^* + (L \cap L^{**})$. Hence $L \cap (L^* + L^{**}) \subseteq L^* + (L \cap L^{**})$. Hence $L \cap (L^* + L^{**}) = L^* + (L \cap L^{**})$.

Theorem 3.3. Let N be a LP Γ SM over a P Γ SR S and Q be a L(R)P Γ I of S. Then the set $L = \{n \in N \mid Q\Gamma n = 0\}$ is a SP Γ SSM of N.

Proof. Let $\Sigma_l n_l \in N \ni n_l \in L$, $l \in \Delta$. Then $Q\Gamma n_l = 0$, $l \in \Delta$. $\Rightarrow Q\Gamma(\Sigma_l n_l) = \Sigma_l(Q\Gamma n_l) = 0$ and so $\Sigma_l n_l \in L$. Let $s \in S$, $\mu \in \Gamma$ and $n \in L$. Then $Q\Gamma n = 0$. Let $m \in Q\Gamma(s\mu n)$. Then $m = \Sigma_l m_l \mu_l(s\mu n)$, $m_l \in Q$ and $\mu_l \in \Gamma$. $\Rightarrow m = \Sigma_l(m_l \mu_l s)\mu n$. Since $m_l \in Q$, $m_l \mu_l s \in Q$, $l \in \Delta$ (Since Q is L(R)P\Gamma I). $\Rightarrow \Sigma_l(m_l \mu_l s)\mu n \in Q\Gamma n = 0$, $l \in \Delta$. $\Rightarrow m = \Sigma_l m_l \mu_l(s\mu n) = 0$. $\Rightarrow Q\Gamma(s\mu n) = 0$ and so $s\mu n \in L$. Hence L is a P\GammaSSM of N.

To prove *L* is subtractive, let $p, p^* \in N$ such that $p \in L$ and $p + p^* \in L$. Then $Q\Gamma p = 0$ and $Q\Gamma(p + p^*) = 0$. $\Rightarrow Q\Gamma p^* = 0$ and so $n \in L$. Hence *L* is a **SP** Γ **SSM** of *N*.

Definition 3.2. A LP Γ SM U over a P Γ SR S is called LA if $\{0\}$ and U are the only SP Γ SSMs of N.

Theorem 3.4. Let S be a commutative $\mathbf{P}\Gamma\mathbf{SR}$. If U is a LAP $\Gamma\mathbf{SM}$ over S then $(0:U) = (0:u) \forall 0 \neq u \in U$.

P. V. SRINIVASA RAO, M. SIVA MALA, AND K. KIRAN KUMAR

Proof. Since $(0:U) = \bigcap_{u \in U} (0:u)$, we have $(0:U) \subseteq (0:u) \forall 0 \neq u \in U$. Suppose if $(0:u) \not\subseteq (0:U)$ for some $0 \neq u \in U$. Then $(0:u) \not\subseteq (0:u^*)$ for some $0 \neq u^* \in U$. Take $V = \{z \in U \mid (0:u) \subseteq (0:z)\}$. Clearly $0 \neq u \in V$ and $0 \neq u^* \notin V$. Therefore $\{0\} \subset V \subset U$. Now we claim that V is a **SPFSSM** of U: Let $\Sigma_l z_l \in U \ni z_l \in V$, $l \in \Delta$. Then $(0:u) \subseteq (0:z_l)$, $l \in \Delta$. $\Rightarrow (0:u) \subseteq (0:\Sigma_l z_l)$ and so $\Sigma_l z_l \in V$. Let $s \in S$, $\mu \in \Gamma$ and $z \in V$. Then $(0:u) \subseteq (0:z)$. To prove $s\mu z \in V$ it is enough to prove that $(0:u) \subseteq (0:s\mu z)$. For this, let $y \in (0:u)$. Then $y \in (0:z)$. $\Rightarrow y\beta z = 0 \forall \beta \in \Gamma$. $\Rightarrow y\mu z = 0$ (for $\beta = \mu$). \Rightarrow $s\alpha(y\mu z) = 0 \forall \alpha \in \Gamma$. $\Rightarrow (s\alpha y)\mu z = 0 \forall \alpha \in \Gamma$. $\Rightarrow (y\alpha s)\mu z = 0 \forall \alpha \in \Gamma$ (since Sis commutative). $\Rightarrow y\alpha(s\mu z) = 0 \forall \alpha \in \Gamma$. $\Rightarrow y \in (0:s\mu z)$. $\Rightarrow (0:u) \subseteq (0:s\mu z)$ and so $s\mu z \in V$. Hence V is a **P**Г**SSM** of U.

Let $p, q \in U \ni p \in V$ and $p + q \in V$. Then $(0 : u) \subseteq (0 : p)$ and $(0 : u) \subseteq (0 : p + q)$. p + q). Let $x \in (0 : u)$. Then $x \in (0 : p)$ and $x \in (0 : p + q)$. $\Rightarrow x\mu p = 0$ and $x\mu(p+q) = 0 \forall \mu \in \Gamma$. $\Rightarrow x\alpha q = 0 \forall \mu \in \Gamma$. $\Rightarrow x \in (0 : q)$ and so $(0 : u) \subseteq (0 : q)$. $\Rightarrow q \in V$. Hence V is a nontrivial **SP** Γ **SSM** of U, a contradiction to the fact that U is **LAP** Γ **SM**. Hence $(0 : U) = (0 : u) \forall 0 \neq u \in U$.

REFERENCES

- M. A. ARBIB, E. G. MANES: Partially Additive Categories and Flow-diagram Semantics, Journal of Algebra, 62 (1980), 203 – 227.
- [2] E. G. MANES, D. B. BENSON: The Inverse Semigroup of a Sum-Ordered Partial Semiring, Semigroup Forum, 31 (1985), 129 – 152.
- [3] M. MURALI KRISHNA RAO: Γ-semirings-I, Southeast Asian Bulletin of Mathematics, 19(1) (1995), 49 – 54.
- [4] M. SIVA MALA, K. SIVA PRASAD: Partial Γ-Semirings, Southeast Asian Bulletin of Mathematics, 38 (2014), 873 885.
- [5] M. SIVA MALA, K. SIVA PRASAD: *Ideals of Sum-Ordered partial* Γ-Semirings, Southeast Asian Bulletin of Mathematics, **40** (2016), 413 426.
- [6] M. SIVA MALA, K. SIVA PRASAD: Prime Ideals of Γ-So-rings, International Journal of Algebra and Statistics(IJAS), 3(1) (2014), 1 – 8.
- [7] M. SIVA MALA, K. SIVA PRASAD: Semiprime Ideals of Γ-So-rings, International Journal of Algebra and Statistics(IJAS), 3(1) (2014), 26 – 33.
- [8] M. SIVA MALA, P. V. SRINIVASA RAO, K. KIRAN KUMAR: Partial Γ-Semimodules over Partial Γ-Semirings, communicated to Punjab University Journal of Mathematics(PUJM).

6496

DEPARTMENT OF BASIC ENGINEERING DVR AND DR. HS MIC COLLEGE OF TECHNOLOGY KANCHIKACHERLA-521180, KRISHNA(D.T) ANDHRA PRADESH, INDIA *Email address*: srinu_fu2004@yahoo.co.in

DEPARTMENT OF MATHEMATICS V. R. SIDDHARTHA ENGINEERING COLLEGE KANURU, VIJAYAWADA-520007 ANDHRA PRADESH, INDIA *Email address*: sivamala_aug9@yahoo.co.in

FRESHMAN ENGINEERING DEPARTMENT P.V.P. SIDDHARTHA INSTITUTE OF TECHNOLOGY KANURU, VIJAYAWADA-520007 ANDHRA PRADESH, INDIA *Email address*: kkumark_2005@yahoo.co.in