ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.9, 7101–7104 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.60

CUBE DIFFERENCE LABELING FOR COMPLETE TRIPARTITE GRAPH

S. VIDYANANDINI

ABSTRACT. Consider an undirected finite connected graph G = (V, E), where V and E are the sets of vertices and edges of G, respectively and |E| = e and |V| = n. G possess cube difference labeling if there exits a injection $f: V(G) \longrightarrow \{0, 1, \dots, p-1\}$ so that the edge set of G has assigned a weight defined by the absolute of cube difference if its end-vertices, the resulting weights are distinct. A graph admitting cube difference labeling is called cube difference graph. In this paper, cube difference labeling for complete tripartite graph are discussed.

1. INTRODUCTION

A cube difference labeling of a graph G of size n exist for function f if f permits an injection from V(G) to the set $\{0, 1, 2, ..., n\}$ so that, when each edge uv of G has assigned the weight $|[f(u)]^3 - [f(v)]^3|$, shows distinct resulting weights [1–3]. The notion of square difference labeling was established by J. Shiama [4, 6, 7]. He proved cube difference labeling admits for paths, cycles, stars, fan graph, wheel graphs, crown graphs, helm graphs, dragon graphs, co-conut trees and shell graphs. Graph labeling are widely used in communication network, Mobile telecommunication, military offices [5].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C78, 05C05.

Key words and phrases. Cube difference labeling, Complete tripartite graph, Cube difference graph.

S. VIDYANANDINI

Definition 1.1. Consider graph G with vertex set V(G) and edge set E(G). If there exits a injection $f : V(G) \longrightarrow \{0, 1, 2, ..., p-1\}$ such that the induced function $f^* : E(G) \longrightarrow N$ given by $f^*(uv) = |[f(u)]^3 - [f(v)]^3|$ is injective, Then G is said have cube difference labeling.

Definition 1.2. A graph which admits the cube difference labeling is said to be cube difference graph.

Definition 1.3. A complete k - partite graph is a k - partite graph if there is an edge between every pair of vertices obtained from different independent sets.

Definition 1.4. A set of graph vertices partitioned into three independent sets, such that no two graph vertices within the same set are adjacent. such a graph is said to be complete tripartite graph.

2. MAIN RESULT

Theorem 2.1. The tripartite graph $K_{m,n,r}$ for any integer m, n, r > 0 admits cubic difference labeling.

Proof. Consider *G* as a complete tripartite graph $K_{m,n,r}$ for any position integer m, n, r. Note by the definition of complete tripartite graph $K_{m,n,r}$ has n + m + r vertices and $n \ m \ r$ edges. Without loss of generality, let us consider that $m \le n \le r$. Let $|V_1| = m$, $|V_2| = n$ and $|V_3| = r$. Let the vertex subset V_1 has $\{u_0, u_1, u_2, \ldots, u_{m-1}\}$. Let the vertex subset V_2 has $\{v_0, v_1, v_2, \ldots, v_{n-1}\}$. Let the vertex subset V_3 has $\{w_0, w_1, w_2, \ldots, w_{r-1}\}$. Define vertex labeling $f : V_1 \cup V_2 \cup V_3 \longrightarrow \{0, 1, 2, \ldots, (m + n + r) - 1\}$

$$f(u_i) = i, \quad 0 \le i \le m - 1$$

 $f(v_j) = m + j, \quad 0 \le j \le n - 1$
 $f(w_k) = m + n + k, \quad 0 \le k \le r - 1.$

Define labeling function for Edge f^* as $f^*(uv) = |f(u)^3 - f(v)^3|$ for any edge $vu \in E(G)$ and $f^*(wv) = ||f(w)^3 - f(v)^3||$ for any edge $wv \in E(G)$. It is clear that f is bijective and vertex labels of G are distinct.

Claim 1. The edge labels of the edges of G are distinct.

7102

Let V_j and V_{j+1} for j, $0 \le j \le n-2$ be the vertices in V_2 such that their vertex labels are consecutive. Let us assume that $f(V_j) = t$ and $f(V_{j+1}) = t + 1$. By the definition of vertex labels of vertices in V_2 it is clear that $t \ge m$. Also, let w_k and w_{k+1} for K, $0 \le k \le r-1$ be the vertices in V_3 such that their vertex labels are consecutive. Let us assume that, $f(w_k) = s$ and $f(w_{k+1}) = s + 1$. By the definition vertex labels of vertices in V_3 , it is clear that $s \ge n$.

Since G is a complete tripartite graph, vertex V_j is adjacent to every vertex u_i in V_1 for $0 \le i \le m - 1$. Similarly, V_{j+1} is adjacent to vertex u_i in V_1 for $i, 0 \le i \le m - 1$.

Since the vertex label of u_i and vertex label of V_j are distinct, the induced edge labels of the edges $V_j u_i$ for $i, 0 \le i \le m - 1$ are distinct. Similarly, edge labels of the edges that was induced, $V_{j+1}u_i$ for $i, 0 \le j \le m - 1$ are also distinct.

Further, edge labels of the edges that was induced $V_j u_i$ and $V_{j+1}u_i$ form a monotonically increasing sequence as *i* increases from 0 to m-1. Also, Though *G* is a complete tripartite graph, we have vertex w_k adjoining to every vertex V_j in V_2 for $j, 0 \le j \le n-1$. Similarly, w_{k+1} is adjoining ∞ to every vertex V_j in V_2 for $j, 0 \le j \le n-1$.

Since the vertex label of V_j and vertex label of w - k are distinct, the induced edge label of the edges $w_k V_j$ for $j, 0 \le j \le n - 1$ are distinct. Similarly, edge labels of the edges that was induced, $w_{k+1}V_j$ for $j, 0 \le j \le n - 1$ are distinct. Further, edge label of the edges that was induced $w_k V_j$ and $w_{k+1}V_j$ form a monotonically increasing sequence as j increases from 0 to n - 1. By the definition of f and f^*

$$f^*(V_j u_0) = ||f(V_j)|^2 - |f(u_0)|^2| = |t^2 - 0| = t^2$$

$$f^*(V_{j+1}u_{m-1}) = ||f(V_{j+1})|^2 - |f(u_{m-1})|^2|| = |(t+1)^2 - (m-1)^2|$$

$$= |t^2 + 2t - m^2 + 2m| > 0,$$

also,

$$f^*(w_k v_0) = ||f(w_k)|^2 - |f(v_0)|^2|$$

= $|s^2 - 0^2| = s^2$
$$f^*(w_{k+1}v_{n-1}) = |(s+1)^2 - (n-1)^2|$$

= $|s^2 + 2s + 1 - (n^2 - 2n + 1)|$
= $|s^2 + 2s - n^2 + 2n| > 0$.

S. VIDYANANDINI

Hence, the edge labels of G are distinct. Hence the theorem

FIGURE 1. Y-Tree

References

- V. AJITHA, S. ARUMUGAM: Geemina KA. On Square sum graph. AKCE J.Graphs, Comin., 6 (2006), 1–10.
- [2] L. BEINEKE, S. M. HEGDE: Strongly multiplicative graphs, Discuss. Math.Graph theory, 21 (2000) 21, 63–75.
- [3] J. A. GALLIAN: A dynamic survey of graph labeling, The Electronics journal of Combinatories, 7, 2010.
- [4] J. SHIAMA: Permutation sum labeling for some shadow graph, International Journal of Computer Application, 40(6) (2012), 31–35.
- [5] D. B. WEST: it Introduction to Graph Theory, Prentice-Hall, 2001.
- [6] J. SHIAMA: Square sum labeling for some middle and total graphs, International Journal of Computer Application, **37**(4) (2012), 6–8.
- [7] J. SHIAMA: *Square difference labeling for some Graphs*, International Journal of Computer Application, **44**(4) (2012), 30–33.

DEPARTMENT OF MATHEMATICS, FACULTY OF ENGINEERING AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY KATTANKULATHUR -603 203, KANCHEEPURAM DISTRICT, TAMILNADU, INDIA *Email address*: vidhyanandhini.maths@gmail.com

7104